Slim Profile, Optimized Design

GlidePath™ 13F
Long-Term Hemodialysis Catheter
Flows You Need

The GlidePath™ portfolio of hemodialysis catheters provides a full range of flow rates to meet the needs of your hemodialysis patients.

Average Max Flow Rate

<table>
<thead>
<tr>
<th>Size</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5F</td>
<td>74-129 ml/min</td>
</tr>
<tr>
<td>10F</td>
<td>181-256 ml/min</td>
</tr>
<tr>
<td>13F</td>
<td>329-456 ml/min</td>
</tr>
<tr>
<td>14.5F</td>
<td>366-578 ml/min</td>
</tr>
</tbody>
</table>

Optimized Lumens

GlidePath™ 13F Catheter design has optimized lumens, which are designed to minimize deflection under pressure and improve flow performance.

Recirculation Rates

GlidePath™ 13F Catheters have low recirculation rates. In forward and reverse, recirculation rates were found to be 1% or less.\(^2\)

Expanded Size Options

With the introduction of GlidePath™ 13F Catheter, BD now offers a robust portfolio of symmetric tip hemodialysis catheters, ranging from 7.5 to 14.5 in French size and from 8 to 50 centimeters in length.

1 Tested using blood simulant composed of glycerin and water and a 5% saline solution at a max arterial pressure of -250mmHg. N=40 for each size tested. The Max Flow Rate ranges are shown in forward for 8-19cm for 7.5F, 10-23cm for 10F, 15-35cm for 13F and 15-50cm for 14.5F. Bench data on file. May not necessarily correlate to clinical performance. Different test methods may yield different results.

2 Tested using 35cm tip to cuff straight catheters (GlidePath n=40). Recirculation test performed using a blood simulant composed of glycerin and water and a 5% saline solution as the recirculation media delivered at a blood flow rate of ~ 12 L/min and catheter flow rate of 300 mL/min. Bench data on file. May not necessarily correlate to clinical performance. Different test methods may yield different results.

* Also indicated for pediatric use
Optimized Design

The GlidePath™ 13F Catheter provides the same quality features as our GlidePath™ portfolio of hemodialysis catheters.

Key Features

- **AirGuard™ Valved Introducer**
 - The AirGuard™ Valved Introducer helps reduce risk of air embolism during the procedure.
 - The AirGuard™ Valved Introducer sheath length is appropriately sized for small patient placement.

- **One Pre-Loaded Stylet to Simplify Over-the-Wire Placement**

- **Fixed Suture Wings Provide Stability**

- **Thermosensitive Polyurethane Shaft**

- **Tapered Cuff**

- **Smooth Tapered Tip**

Kink Diameter

The kink diameter of the GlidePath™ 13F Catheter is 14% smaller when compared to Medcomp Hemo-Cath™ LT 12.5F catheter.

3 Straight codes only

4 Tested using 23cm tip to cuff straight catheters (GlidePath n=40, Hemo-Cath = 5). Calculations based upon the ratios of average kink diameter values of 0.475 in for GlidePath 13F and 0.555 in for Medcomp Hemo-Cath LT. Bench data on file. May not necessarily correlate to clinical performance. Different test methods may yield different results.
GlidePath™ 13F Long-Term Dialysis Catheter

Indications for Use: The GlidePath™ 13F long-term hemodialysis catheters are indicated for use in attaining short-term or long-term vascular access for hemodialysis, hemoperfusion or apheresis therapy. Access is attained by the internal jugular vein, subclavian vein, or femoral vein.

Warning: Preventive insertion of the catheter should be made into the axillary-subclavian vein at the junction of the axillary and mid third of the clavicle laterally to the thoracic outlet. The catheter should not be inserted into the subclavian vein medially because such placement can lead to compression of the catheter between the first rib and clavicle and can lead to damage or fracture and embolization of the catheter. Fluoroscopic or radiographic confirmation of catheter tip placement is strongly recommended because such placement can lead to compression of the catheter between the first rib and clavicle and can lead to damage or fracture and embolization of the catheter.

Contraindication: This device is contraindicated for patients exhibiting severe, uncontrollable thrombocytopenia or coagulopathy.

Precautions:
- If the catheter is intended to be placed in a jugular or subclavian vein, the introducer sheath is only torn externally. Catheter may need to be further pushed into vessel as a potential kink would create an impasse to the catheter.
- Ensure that perforation could result.
- Care should be taken not to advance the split sheath too far beyond the subcutaneous tissue into the vessel walls.
- Ensure that perforation could result.

Adverse Reactions: The use of an indwelling central venous catheter provides an important means of vascular access for critically ill patients; however, the potential exists for various complications including the following:

- **Air Embolism**
- **Atrial Fibrillation**
- **Bringing**
- **Hypertension**
- **Myocardial Infarction**
- **Perforation of Vessels or Viscus**
- **Phlebitis**
- **Pneumothorax**
- **Pulmonary Edema**
- **Pleural Injury**
- **Pulmonary Embolism**
- **Surgery**
- **Vascular**
- **Vasovagal reaction**
- **Vasovagal Syncope**
- **Ventricular Arrhythmia**
- **Ventricular Fibrillation**
- **Ventricular Tachycardia**
- **Ventricular Tachystomp**

Use in Neonates:
- Air embolism can occur due to the higher blood volume relative to the rate of infusion.
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Pediatric Patients:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Adults:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Cardiac Pacemakers:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Implanted Defibrillators:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Implantable Cardioverter-Defibrillators:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Catheters or Cuffs on Implanted Devices:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with External Cardiac Defibrillators:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Cardiac Stimulation Devices:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Implantable Intracardiac Pacemakers:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Central Venous Lines:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Central Venous Catheters:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Corridors:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Coronary Angioplasty:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Aortography:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Renal Angioplasty:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrostomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Gastroenterostomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Pancreatoscopy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Cholecystostomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrostomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrosaphy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrosanalogy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrosphere:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephroshearing:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrosuction:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrosurgery:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephricotomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrotomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrectomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrexy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrostomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrosurgery:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrotomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrectomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrostomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrosurgery:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrotomy:
- Ensure that perforation could result.
- Ensure that perforation could result.

Use in Patients with Percutaneous Transluminal Nephrectomy:
- Ensure that perforation could result.
- Ensure that perforation could result.