DICOM Conformance Statement for
Site~Rite® 8 Ultrasound System DICOM

Company Name: BARD Access Systems, Inc.

Product Name: Site~Rite® 8 Ultrasound System DICOM

Version: 1.0-rev. A-1

Internal Document Number: 1190674

Date: April 20, 2015
1. CONFORMANCE STATEMENT OVERVIEW

Site~Rite® 8 Ultrasound System DICOM functionality accepts standard JPEG raster images from the Ultrasound device and generates Ultrasound Image DICOM instances for ultrasound images and Secondary Capture DICOM instances for supporting ECG Waveform images based on the selected patient information. In addition, it allows the user to manually input patient/study information. It also implements the necessary DICOM services to transfer images to a PACS archive.

Table 1-1 provides an overview of network services performed by the Site~Rite® 8 Ultrasound System DICOM application.

<table>
<thead>
<tr>
<th>SOP Classes</th>
<th>User of Service (SCU)</th>
<th>Provider of Service (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrasound Image</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Secondary Capture Image</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
2. TABLE OF CONTENTS

1. CONFORMANCE STATEMENT OVERVIEW ... 2
2. TABLE OF CONTENTS ... 3
3. INTRODUCTION .. 4
 3.1. REVISION HISTORY .. 4
 3.2. AUDIENCE .. 4
 3.3. REMARKS .. 4
 3.4. TERMS AND DEFINITIONS ... 4
 3.5. BASICS OF DICOM COMMUNICATION .. 6
 3.6. ABBREVIATION ... 7
 3.7. REFERENCES .. 7
4. NETWORKING ... 8
 4.1. IMPLEMENTATION MODEL ... 8
 4.1.1. Application Data Flow .. 8
 4.1.2. Functional Definition of AEs ... 8
 4.1.2.1. Functional Definition of Storage Application Entity 8
 4.1.2.2. Sequencing of Real-World Activities ... 9
 4.2. AE SPECIFICATIONS ... 9
 4.2.1. Storage Application Entity Specification .. 9
 4.2.1.1. SOP Classes .. 9
 4.2.1.2. Association Policies .. 10
 4.2.1.2.1. General ... 10
 4.2.1.2.2. Number of Associations .. 10
 4.2.1.2.3. Asynchronous Nature ... 10
 4.2.1.2.4. Implementation Identifying Information 10
 4.2.1.3. Association Initiation Policy ... 10
 4.2.1.3.1. Activity – Send Images ... 10
 4.2.1.3.1.1. Description and Sequence of Activities 10
 4.2.1.3.1.2. Proposed Presentation Contexts .. 12
 4.2.1.3.1.3. SOP Specific Conformance Image Storage SOP Classes 12
6. SUPPORT FOR EXTENDED CHARACTER SETS ... 14
5. MEDIA INTERCHANGE .. 14
6. ANNEXES ... 15
 6.1. IOD CONTENTS .. 15
 6.1.1. Created SOP Instance(s) .. 15
 6.1.1.1. Secondary Capture Image IOD ... 15
 6.1.1.2. Common Module .. 15
 6.1.1.3. Secondary Capture Image Modules .. 16
3. INTRODUCTION

3.1. REVISION HISTORY

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Date of Issue</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>March 24, 2015</td>
<td>Tyler Durfee</td>
<td>Initial Version</td>
</tr>
</tbody>
</table>

3.2. AUDIENCE

This document is written for people who need to understand how the Site~Rite® 8 Ultrasound System DICOM application will integrate into their healthcare facility. This includes both those responsible for overall imaging network policy and architecture, as well as integrators who need to have a detailed understanding of the DICOM features of the product. This document contains some basic DICOM definitions so that any reader may understand how this product implements DICOM features. However, integrators are expected to fully understand all the DICOM terminology, how the tables in this document relate to the product’s functionality, and how that functionality integrates with other devices that support compatible DICOM features.

3.3. REMARKS

The scope of this DICOM Conformance Statement is to facilitate integration between Site~Rite® 8 Ultrasound System DICOM and other DICOM products. The Conformance Statement should be read and understood in conjunction with the DICOM Standard. DICOM by itself does not guarantee interoperability. The Conformance Statement does, however, facilitate a first-level comparison for interoperability between different applications supporting compatible DICOM functionality.

This Conformance Statement is not supposed to replace validation with other DICOM equipment to ensure proper exchange of intended information. In fact, the user should be aware of the following important issues:

- The comparison of different Conformance Statements is just the first step towards assessing interconnectivity and interoperability between the product and other DICOM conformant equipment.
- Test procedures should be defined and executed to validate the required level of interoperability with specific compatible DICOM equipment, as established by the healthcare facility.

3.4. TERMS AND DEFINITIONS

Informal definitions are provided for the following terms used in this Conformance Statement. The DICOM Standard is the authoritative source for formal definitions of these terms.

Abstract Syntax – the information agreed to be exchanged between applications, generally equivalent to a Service/Object Pair (SOP) Class. Examples: Verification SOP Class, Modality Worklist Information Model Find SOP Class, Computed Radiography Image Storage SOP Class.

Application Entity (AE) – an end point of a DICOM information exchange, including the DICOM network or media interface software; i.e., the software that sends or receives DICOM information objects or messages. A single device may have multiple Application Entities.
Application Entity Title – the externally known name of an Application Entity, used to identify a DICOM application to other DICOM applications on the network.

Application Context – the specification of the type of communication used between Application Entities. Example: DICOM network protocol.

Association – a network communication channel set up between Application Entities.

Attribute – a unit of information in an object definition; a data element identified by a tag. The information may be a complex data structure (Sequence), itself composed of lower level data elements. Examples: Patient ID (0010, 0020), Accession Number (0008,0050).

Information Object Definition (IOD) – the specified set of Attributes that comprise a type of data object; does not represent a specific instance of the data object, but rather a class of similar data objects that have the same properties. The Attributes may be specified as Mandatory (Type 1), Required but possibly unknown (Type 2), or Optional (Type 3), and there may be conditions associated with the use of an Attribute (Types 1C and 2C). Examples: MR Image IOD, CT Image IOD, Print Job IOD.

Joint Photographic Experts Group (JPEG) – a set of standardized image compression techniques, available for use by DICOM applications.

Media Application Profile – the specification of DICOM information objects and encoding exchanged on removable media (e.g., CDs)

Module – a set of Attributes within an Information Object Definition that are logically related to each other. Example: Patient Module includes Patient Name, Patient ID, Patient Birth Date, and Patient Sex.

Negotiation – first phase of Association establishment that allows Application Entities to agree on the types of data to be exchanged and how that data will be encoded.

Presentation Context – the set of DICOM network services used over an Association, as negotiated between Application Entities; includes Abstract Syntaxes and Transfer Syntaxes.

Protocol Data Unit (PDU) – a packet (piece) of a DICOM message sent across the network. Devices must specify the maximum size packet they can receive for DICOM messages.

Security Profile – a set of mechanisms, such as encryption, user authentication, or digital signatures, used by an Application Entity to ensure confidentiality, integrity, and/or availability of exchanged DICOM data.

Service Class Provider (SCP) – role of an Application Entity that provides a DICOM network service; typically, a server that performs operations requested by another Application Entity (Service Class User). Examples: Picture Archiving and Communication System (image storage SCP, and image query/retrieve SCP), Radiology Information System (modality worklist SCP).

Service Class User (SCU) – role of an Application Entity that uses a DICOM network service; typically, a client. Examples: imaging modality (image storage SCU, and modality worklist SCU), imaging workstation (image query/retrieve SCU)
Service/Object Pair (SOP) Class – the specification of the network or media transfer (service) of a particular type of data (object); the fundamental unit of DICOM interoperability specification. Examples: Ultrasound Image Storage Service, Compression syntax, Transfer syntax, or patient information.

Service/Object Pair (SOP) Instance – an information object; a specific occurrence of information exchanged in a SOP Class. Examples: a specific ultrasound image.

Tag – a 32-bit identifier for a data element, represented as a pair of four digit hexadecimal numbers, the “group” and the “element”. If the “group” number is odd, the tag is for a private (manufacturer-specific) data element. Examples: (0010,0020) [Patient ID], (07FE,0010) [Pixel Data], (0019,0210) [private data element]

Transfer Syntax – the encoding used for exchange of DICOM information objects and messages. Examples: JPEG compressed (images), little endian explicit value representation.

Unique Identifier (UID) – a globally unique “dotted decimal” string that identifies a specific object or a class of objects; an ISO-8824 Object Identifier. Examples: Study Instance UID, SOP Class UID, SOP Instance UID.

Value Representation (VR) – the format type of an individual DICOM data element, such as text, an integer, a person’s name, or a code. DICOM information objects can be transmitted with either explicit identification of the type of each data element (Explicit VR), or without explicit identification (Implicit VR); with Implicit VR, the receiving application must use a DICOM data dictionary to look up the format of each data element.

3.5. BASICS OF DICOM COMMUNICATION

This section describes terminology used in this Conformance Statement for the non-specialist. The key terms used in the Conformance Statement are highlighted in *italics* below. This section is not a substitute for training about DICOM, and it makes many simplifications about the meanings of DICOM terms.

Two Application Entities (devices) that want to communicate with each other over a network using DICOM protocol must first agree on several things during an initial network “handshake”. One of the two devices must initiate an Association (a connection to the other device), and ask if specific services, information, and encoding can be supported by the other device (Negotiation).

DICOM specifies a number of network services and types of information objects, each of which is called an Abstract Syntax for the Negotiation. DICOM also specifies a variety of methods for encoding data, denoted Transfer Syntaxes. The Negotiation allows the initiating Application Entity to propose combinations of Abstract Syntax and Transfer Syntax to be used on the Association; these combinations are called Presentation Contexts. The receiving Application Entity accepts the Presentation Contexts it supports.

For each Presentation Context, the Association Negotiation also allows the devices to agree on Roles – which one is the Service Class User (SCU - client) and which is the Service Class Provider (SCP - server). Normally the device initiating the connection is the SCU, i.e., the client system calls the server, but not always.

The Association Negotiation finally enables exchange of maximum network packet (PDU) size, security information, and network service options (called Extended Negotiation information).
The Application Entities, having negotiated the Association parameters, may now commence exchanging data. Common data exchanges include queries for worklists and lists of stored images, transfer of image objects and analyses (structured reports), and sending images to film printers. Each exchangeable unit of data is formatted by the sender in accordance with the appropriate Information Object Definition, and sent using the negotiated Transfer Syntax. There is a Default Transfer Syntax that all systems must accept, but it may not be the most efficient for some use cases. Each transfer is explicitly acknowledged by the receiver with a Response Status indicating success, failure, or that query or retrieve operations are still in process.

Two Application Entities may also communicate with each other by exchanging media (such as a CD-R). Since there is no Association Negotiation possible, they both use a Media Application Profile that specifies “pre-negotiated” exchange media format, Abstract Syntax, and Transfer Syntax.

3.6. ABBREVIATION

The following acronyms and abbreviations are used in this document:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>AE</td>
<td>Application Entity</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User</td>
</tr>
<tr>
<td>SOP</td>
<td>Service-Object Pair</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>UID</td>
<td>Unique Identifier</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian Explicit</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian Explicit</td>
</tr>
</tbody>
</table>

3.7. REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td>An image compression stands originally created by Joint Photographic Experts Group. It is now known as ISO/IEC IS 10918-1</td>
</tr>
</tbody>
</table>
4. NETWORKING

4.1. IMPLEMENTATION MODEL

4.1.1. Application Data Flow

The Storage Application Entity of the Site~Rite® 8 Ultrasound System DICOM application sends images to a remote AE. It is associated with a local real-world activity “Send Images”. “Send Images” is performed upon user request for each study completed or for specific images selected. When activated by a user via the provided user interface in the Site~Rite® 8 Ultrasound System DICOM application, each marked set of images can be stored immediately to a preconfigured destination.

4.1.2. Functional Definition of AEs

4.1.2.1. Functional Definition of Storage Application Entity

The user selects a set of images stored locally in the Site~Rite® 8 Ultrasound System DICOM application and selects the DICOM Transfer (Send) button to activate the Storage AE. An associate request is sent to the preconfigured destination AE, and upon successful negotiation of a Presentation Context, the image transfer is started. If the association cannot be established, the user is immediately notified with an error notification and details are logged. By default, the Storage AE will not try to initiate another association in the case of an error condition.
4.1.2.2. Sequencing of Real-World Activities

Under the normal workflow condition, the sequencing constraints illustrated in Figure 4.1-2 apply:

1. User inputs or updates patient and study information when applicable.
2. User captures an image during study.
3. User selects images from local storage via the user interface for transmission to the remote AE and selects the “DICOM Transfer” button within the application user interface.
4. Application reads the patient information entered by user for the study, generates DICOM instances, and sends selected DICOM instance to a remote AE.

4.2. AE SPECIFICATIONS

4.2.1. Storage Application Entity Specification

4.2.1.1. SOP Classes

Site-Rite® 8 Ultrasound System DICOM Application provides Standard Conformance to the following SOP Classes:

<table>
<thead>
<tr>
<th>Table 4.2-1 SOP Classes for AE Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP Class Name</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Ultrasound Image Storage</td>
</tr>
<tr>
<td>Secondary Capture Image Storage</td>
</tr>
</tbody>
</table>
4.2.1.2. Association Polices

4.2.1.2.1. General

The DICOM standard application context name for DICOM 3.0 is always proposed:

| Table 4.2-2 |
| DICOM Application Context for AE Storage |
| Application Context Name | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Number of Associations

Site-Rite® 8 Ultrasound System DICOM Application initiates one Association at a time for each destination for which a transfer request activated by the user is being processed. Only one transfer job will be active at a time, others remain pending until the active transfer request is completed or fails.

| Table 4.2-3 |
| Number of Associations Initiated for AE Storage |
| Maximum Number of simultaneous Associations | 1 |

4.2.1.2.3. Asynchronous Nature

Site-Rite® 8 Ultrasound System DICOM Application does not support asynchronous communication (i.e. multiple outstanding transactions over single association).

| Table 4.2-4 |
| Asynchronous Nature as SCU for Storage |
| Maximum number of outstanding asynchronous transactions | 1 |

4.2.1.2.4. Implementation Identifying Information

The implementation information for this Application Entity is:

| Table 4.2-5 |
| DICOM Implementation Class |
| Implementation Class UID | 1.2.826.0.1.3680043.2.360.0.3.5.4 |

4.2.1.3. Association Initiation Policy

4.2.1.3.1. Activity – Send Images

4.2.1.3.1.1. Description and Sequence of Activities

A user can select images and request them to be sent to a preconfigured destination from the application’s user interface. Each request is performed immediately upon selection of the send button and the user is notified about the status of the transfer.
When a DICOM transfer is activated by the user, the Site~Rite® 8 Ultrasound System DICOM application’s Storage AE tries to establish an association with the preconfigured destination server and initiates a C-STORE request to store the selected images. When this process successfully establishes an Association to a remote Application Entity, it will transfer each selected instance, one after another, via the open association. The status of the transfer is reported back to the user via the user interface. If the C-STORE response from the remote Application contains a status other than Success or Warning, then the association is aborted and the user is notified about the failed status. The transfer process can be restarted by the user at any time.

The Storage AE attempts to initiate a new Association in order to issue a C-STORE request. If the user selection contains multiple images, then a separate association is negotiated for each image in sequential order.

Figure 4.2-6
Sequencing of Activity – Send Images

The possible sequencing of interaction between the Storage AE and a Remote AE (PACS Archive or Image manager supporting Storage Service Class as an SCP) is illustrated in figure 4.2-6:

1. User selects one or more images for transfer
2. For each image selected, Storage AE opens an Association with Remote AE
3. One user selected image is transmitted to Remote AE using C-STORE request and Remote AE replies with C-STORE response (status success)
4. Storage AE closes the Association
5. Storage AE sequentially processes the next image following the steps 2-4 above until all images are transferred
4.2.1.3.1.2. Proposed Presentation Contexts

The Site-Rite® 8 Ultrasound System DICOM application is capable of proposing any Presentation Context shown in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Abstract Syntax</th>
<th>Transfer Syntax</th>
<th>Role</th>
<th>Ext. Neg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>See Table 4.2-8</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>Secondary Capture Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>See Table 4.2-8</td>
<td>SCU</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 4.2-8

Proposed Transfer Syntax

<table>
<thead>
<tr>
<th>Transfer Syntax Name</th>
<th>Transfer Syntax UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit VR Little Endian</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Explicit VR Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Explicit VR Big Endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

Table 4.2-9

Compression

<table>
<thead>
<tr>
<th>Transfer Syntax Name</th>
<th>Transfer Syntax UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG Lossy</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG Lossless</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

In the process of transferring one image, the Site-Rite® 8 Ultrasound System DICOM application will include the same abstract syntax (i.e. SOP Class of the image instance) in multiple presentation contexts. Each Abstract Syntax and Transfer Syntax pair is unique and one of the proposed presentation contexts will contain the DICOM default transfer syntax (i.e. Implicit VR Little Endian) per abstract syntax. A presentation context with Verification SOP Class is always included in an Associate request by the Storage AE.

4.2.1.3.1.3. SOP Specific Conformance Image Storage SOP Classes

All Image Storage SOP Classes supported by the Storage AE exhibit the same behavior, except where stated, and are described together in this section.

Based on the Storage SOP Class of the user selected image instance, the Storage AE proposes an Association request to the Remote AE with multiple presentation contexts, each containing a different transfer syntax supported by the Storage AE. If none of the presentation context matching the Storage SOP Class of the selected image instance being processed is accepted the user is appropriately notified about the failure condition.

If multiple presentation contexts are accepted by the Remote AE for the same Abstract Syntax, the Storage AE, by default, picks the presentation context based on the selected image (i.e. Ultrasound or Secondary Capture) before the C_STORE process.
The behavior of the Storage AE when encountering a status code in the C-STORE response is summarized in the following table:

<table>
<thead>
<tr>
<th>Service Status</th>
<th>Further Meaning</th>
<th>Error Code</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>Success</td>
<td>0000</td>
<td>The SCP has successfully stored the SOP Instance. If all selected SOP Instances in a transfer request have status success then the transfer is considered success and user is notified.</td>
</tr>
<tr>
<td>Warning</td>
<td>Warning</td>
<td>B000-BFFF</td>
<td>Image transmission is considered successful</td>
</tr>
<tr>
<td>*</td>
<td>Error</td>
<td>Any other status code</td>
<td>The SCP Failed to store the instance.</td>
</tr>
</tbody>
</table>

The behavior of the Storage AE during the communication failure is summarized in the following table:

<table>
<thead>
<tr>
<th>Exception</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>The Association is aborted using A-ABORT and the transfer job is considered as failed. The reason is reported to the log file</td>
</tr>
<tr>
<td>Association aborted by the SCP or network layer</td>
<td>The transfer job is considered as failed. The reason is reported to the user via the log file</td>
</tr>
</tbody>
</table>

Note: The log file can be saved to a USB storage device by selecting “shift+cntrl+L”.

A failed transfer can be restarted by user interaction. The application does not automatically try to resend the files that failed to transfer.

The contents of different Image Storage SOP Instances created by Site~Rite® 8 Ultrasound System DICOM conform to PS 3.3 Image IOD definition of the DICOM Standard and are described in section 6.1.

4.3. COMMUNICATIONS PROFILES
Site~Rite® 8 Ultrasound System DICOM Application provides DICOM V3.0 TCP/IP Network Communication support as defined in Part 8 of the DICOM Standard.

4.3.1. TCP/IP Stack
Site~Rite® 8 Ultrasound System DICOM Application inherits its TCP/IP stack from the computer system upon which it executes.

4.3.1.1. Physical Media Support
Site~Rite® 8 Ultrasound System DICOM Application is indifferent to the physical medium over which TCP/IP executes; it inherits the medium from the computer system upon which it executes.

4.4. EXTENSIONS / SPECIALIZATIONS / PRIVATIZATIONS
Not applicable.
4.5. CONFIGURATION

4.5.1. AE Title/Presentation Address Mapping

No default AE Titles are provided. Local and Remote AE Titles along with remote server host addresses and port numbers must be configured. The configured local AE Title and remote connection information is stored in the system for later use by the Storage AE.

4.5.1.1. Local AE Titles

There is only one local AE Title configurable for the Storage AE. This configuration can be modified by the user.

4.5.1.2. Remote AE Titles

Site~Rite® 8 Ultrasound System DICOM Application allows only one Remote AE configuration. The Remote AE Title, remote server's host address (i.e. IP address) and port number must be configured at the time of installation. The user can modify the Remote AE, host address and port number configuration at any time.

4.5.1.2.1. Remote SCP

The following table describes the configuration options for the remote SCP:

<table>
<thead>
<tr>
<th>SCP Settings</th>
<th>Default</th>
<th>Configurable</th>
<th>Configuration Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Application Entity Title</td>
<td>No</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Remote Application Entity Title</td>
<td>No</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Remote IP Address</td>
<td>No</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Remote TCP Port</td>
<td>No</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Transfer Syntax</td>
<td>No</td>
<td>Yes</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Compression</td>
<td>No</td>
<td>Yes</td>
<td>Lossless, Lossy, None</td>
</tr>
</tbody>
</table>

4.6. SUPPORT FOR EXTENDED CHARACTER SETS

Site~Rite® 8 Ultrasound System DICOM Application supports the following character sets:

- ISO-IR 6 (default): Basic G0 Set
- ISO-IR 100: Latin Alphabet No. 1

In addition, Site~Rite® 8 Ultrasound System DICOM Application supports the use of the following Character Repertoire in the applicable Value Representations, such as Patient’s Name, Study Description and Series Description:

5. MEDIA INTERCHANGE

Site~Rite® 8 Ultrasound System DICOM application does not support Media Storage.
6. ANNEXES

6.1. IOD CONTENTS

6.1.1. Created SOP Instance(s)

Table 6.1-1 specifies the attributes of a Ultrasound:Secondary Capture Image transmitted by the Site-Rite® 8 Ultrasound System DICOM application’s Storage AE.

The following tables use a number of abbreviations. The abbreviations used in the “Presence of …” column are:

- **VNAP**: Value Not Always Present (attribute sent zero length if no value is present)
- **ANAP**: Attribute Not Always Present
- **ALWAYS**: Always Present
- **EMPTY**: Attribute is sent without a value

The abbreviations used in the “Source” column:

- **USER**: The attribute value source is from User input
- **AUTO**: The attribute value is generated automatically
- **CONFIG**: The attribute value source is a configurable parameter

6.1.1.1. Secondary Capture Image IOD

Table 6.1-1

<table>
<thead>
<tr>
<th>IE</th>
<th>Module</th>
<th>Reference</th>
<th>Presence of Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Patient Name</td>
<td>Table 6.1-2</td>
<td>ALWAYS</td>
</tr>
<tr>
<td>Study</td>
<td>General Study</td>
<td>Table 6.1-3</td>
<td>ALWAYS</td>
</tr>
<tr>
<td>Series</td>
<td>General Series</td>
<td>Table 6.1-4</td>
<td>ALWAYS</td>
</tr>
<tr>
<td>Equipment</td>
<td>SC Equipment</td>
<td>Table 6.1-5</td>
<td>ALWAYS</td>
</tr>
<tr>
<td>Image</td>
<td>General Image</td>
<td>Table 6.1-6</td>
<td>ALWAYS</td>
</tr>
<tr>
<td></td>
<td>Image Pixel</td>
<td>Table 6.1-7</td>
<td>ALWAYS</td>
</tr>
<tr>
<td></td>
<td>SC Image</td>
<td>Table 6.1-8</td>
<td>ALWAYS</td>
</tr>
<tr>
<td></td>
<td>SOP Common</td>
<td>Table 6.1-9</td>
<td>ALWAYS</td>
</tr>
</tbody>
</table>

6.1.1.2. Common Module

Table 6.1-2

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>VR</th>
<th>Value</th>
<th>Presence of Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient’s Name</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>User input or scrip file. Maximum 64 characters</td>
<td>ALWAYS</td>
<td>USER</td>
</tr>
<tr>
<td>Patient ID</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>User input or scrip file. Maximum 64 characters</td>
<td>ALWAYS</td>
<td>USER</td>
</tr>
<tr>
<td>Patient’s Birth Date</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Always empty. Zero length</td>
<td>VNAP</td>
<td>USER</td>
</tr>
<tr>
<td>Patient’s Sex</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>User input or scrip file.</td>
<td>ALWAYS</td>
<td>USER</td>
</tr>
</tbody>
</table>
Table 6.1-3
GENERAL STUDY MODULE OF CREATED SOP INSTANCES

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>VR</th>
<th>Value</th>
<th>Presence of Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Instance UID</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Generated by Site-Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Study Date</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Always empty</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Study Time</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Always empty</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Accession Number</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Always empty</td>
<td>VNAP</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Table 6.1-4
GENERAL SERIES MODULE OF CREATED SOP INSTANCES

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>VR</th>
<th>Value</th>
<th>Presence of Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Series Instance UID</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Generated by Site-Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. Secondary Capture Image Modules

Table 6.1-5
SC EQUIPMENT MODULE OF CREATED SC SOP INSTANCES

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>VR</th>
<th>Value</th>
<th>Presence of Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Conversion Type</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Table 6.1-6
GENERAL IMAGE MODULE OF CREATED SC SOP INSTANCES

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>VR</th>
<th>Value</th>
<th>Presence of Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Type</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Generated by Site-Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Derivation Description</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Generated by Site-Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Lossy Image Compression</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Generated by Site-Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Table 6.1-7
IMAGE PIXEL MODULE OF CREATED SC SOP INSTANCES

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>VR</th>
<th>Value</th>
<th>Presence of Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Data</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>User selected images files (i.e. JPEG).</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Samples Per Pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Photometric Interpretation</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Planar Configuration</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Rows</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Columns</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitsAllocated</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitsStored</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>HighBit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>PixelRepresentation</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Generated by Site–Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Table 6.1-8
SC IMAGE MODULE OF CREATED SC SOP INSTANCES

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>VR</th>
<th>Value</th>
<th>Presence of Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Secondary Capture</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Image file (i.e. JPEG) creation date.</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Time of Secondary Capture</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Image file (i.e. JPEG) creation time</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Table 6.1-9

SOP COMMON MODULE OF CREATED SC SOP INSTANCES

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>VR</th>
<th>Value</th>
<th>Presence of Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Character Set</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>“IOS_IR 100” or ISO_IR_144”</td>
<td>ANAP</td>
<td>CONFIG</td>
</tr>
<tr>
<td>SOP Class UID</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>“1.2.840.10008.5.1.4.1.1.7”</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>SOP Instance UID</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Generated by Site~Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Coding Scheme Designator</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Generated by Site~Rite® 8 Ultrasound System DICOM</td>
<td>ALWAYS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Déclaration de conformité DICOM de l'Échographe Site~Rite® 8 DICOM

Nom de l'entreprise : BARD Access Systems, Inc.

Nom du produit : Échographe Site~Rite® 8 DICOM

Version : 1.0-rev. A-1

Numéro de document interne : 1190674

Date : 20 avril 2015
1. VUE D'ENSEMBLE DE LA DÉCLARATION DE CONFORMITÉ

La fonctionnalité DICOM de l'échographe Site~Rite® 8 accepte les images tramées JPEG standard de l'échographe et génère des instances DICOM Image échographiques pour les images échographiques et des instances DICOM Capture secondaire pour la prise en charge d'images avec tracé ECG basées sur les informations du patient. De plus, elle permet aux utilisateurs de saisir manuellement les informations relatives au patient et à l'examen. Elle met également en œuvre les services DICOM nécessaires pour transférer les images vers une archive PACS.

Le tableau 1-1 récapitule les services réseau fournis par l'application Échographe Site~Rite® 8 DICOM.

<table>
<thead>
<tr>
<th>Classes SOP</th>
<th>Utilisateur du service (SCU)</th>
<th>Fournisseur du service (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfert</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Image échographique</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Image de capture secondaire</td>
<td>Oui</td>
<td>Non</td>
</tr>
</tbody>
</table>
2. TABLE DES MATIÈRES

1. VUE D’ENSEMBLE DE LA DÉCLARATION DE CONFORMITÉ .. 2
2. TABLE DES MATIÈRES .. 3
3. INTRODUCTION ... 4
 3.1. HISTORIQUE DES RÉVISIONS ... 4
 3.2. PUBLIC VISÉ .. 4
 3.3. REMARQUES ... 4
 3.4. TERMES ET DÉFINITIONS ... 4
 3.5. ÉLÉMENTS DE BASE DE LA COMMUNICATION DICOM 6
 3.6. ABRÉVIATION ... 7
 3.7. RÉFÉRENCES ... 8
4. MISE EN RÉSEAU ... 8
 4.1. MODÈLE D’IMPLÉMENTATION .. 8
 4.1.1. Flux de données d’application ... 8
 4.1.2. Définition fonctionnelle des AE ... 8
 4.1.2.1. Définition fonctionnelle d’une Entité d’application de stockage 9
 4.1.2.2. Séquençage des activités pratiques .. 9
 4.2. SPÉCIFICATIONS DE L’AE ... 10
 4.2.1. Spécification de l’Entité d’application de stockage .. 10
 4.2.1.1. Classes SOP .. 10
 4.2.1.2. Politiques d’association .. 10
 4.2.1.2.1. Généralités .. 10
 4.2.1.2.2. Nombre d’Associations ... 10
 4.2.1.2.3. Asynchronisme .. 10
 4.2.1.2.4. Implémentation des informations d’identification 10
 4.2.1.3. Politique d’initiation de l’Association ... 10
 4.2.1.3.1. Activité – Envoyer des images ... 11
 4.2.1.3.1.1. Description et séquence des activités .. 11
 4.2.1.3.1.2. Contextes de présentation proposés ... 12
 4.2.1.3.1.3. Classes SOP de stockage d’image de conformité spécifique SOP 13
 4.3. PROFILS DE COMMUNICATION .. 14
 4.3.1. Pile TCP/IP ... 14
 4.3.1.1. Support physique .. 14
 4.4. EXTENSIONS/SPÉCIALISATIONS/PRIVATISATIONS 14
 4.5. CONFIGURATION ... 14
 4.5.1. Mappage du titre de l’AE à l’adresse de présentation 14
 4.5.1.1. Titres de l’AE locale .. 14
 4.5.1.2. Titres de l’AE distante .. 14
 4.5.1.2.1. SCP distant .. 14
 4.6. PRISE EN CHARGE DES JEUX DE CARACTÈRES ÉTENDUS 15
5. ÉCHANGE DE SUPPORT DE STOCKAGE ... 15
6. ANNEXES ... 15
 6.1. CONTENU IOD ... 15
 6.1.1. Instance(s) SOP créée(s) ... 15
 6.1.1.1. IOD de l’image capture secondaire ... 16
 6.1.1.2. Module commun .. 16
 6.1.1.3. Modules d’image de capture secondaire .. 17
3. INTRODUCTION

3.1. HISTORIQUE DES RÉVISIONS

<table>
<thead>
<tr>
<th>Version du document</th>
<th>Date de publication</th>
<th>Auteur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 mars 2015</td>
<td>Tyler Durfee</td>
<td>Version initiale</td>
</tr>
</tbody>
</table>

3.2. PUBLIC VISÉ

Ce document est destiné aux personnes qui ont besoin de comprendre comment l'application Échographe Site~Rite® 8 DICOM s'intégrera à leur établissement de santé. Cela comprend à la fois les personnes chargées de l'architecture et de la politique du réseau d'imagerie ainsi que les intégrateurs qui doivent avoir une compréhension détaillée des fonctions DICOM du produit. Ce document contient certaines définitions DICOM de base afin que les lecteurs puissent comprendre comment ce produit implémente les fonctionnalités DICOM. Toutefois, les intégrateurs doivent être en mesure de comprendre toute la terminologie DICOM, comment les tableaux de ce document se rapportent à la fonctionnalité du produit et comment cette fonctionnalité s'intègre avec les autres dispositifs prenant en charge des fonctions DICOM compatibles.

3.3. REMARQUES

L'objet de cette Déclaration de conformité DICOM est de faciliter l'intégration entre l'échographe Site~Rite® 8 DICOM et d'autres produits DICOM. La Déclaration de conformité doit être lue et comprise au même titre que la norme DICOM. La norme DICOM en elle-même ne garantit pas l'interopérabilité. La Déclaration de conformité permet toutefois une comparaison de premier niveau de l'interopérabilité entre différentes applications prenant en charge une fonctionnalité DICOM compatible.

Cette Déclaration de conformité n'est pas censée remplacer la procédure de validation avec d'autres équipements DICOM afin de garantir le bon échange des informations prévues. En fait, l'utilisateur doit prendre en compte les aspects clés suivants :

- La comparaison de différentes Déclarations de conformité représente seulement la première étape de l'évaluation de l'interconnectivité et de l'interopérabilité entre le produit et d'autres équipements compatibles DICOM.
- Des procédures de test doivent être définies et exécutées pour valider le niveau requis d'interopérabilité avec les équipements DICOM spécifiques compatibles, comme défini par l'établissement de santé.

3.4. TERMES ET DÉFINITIONS

Des définitions informelles sont fournies pour les termes suivants utilisés dans cette Déclaration de conformité. La norme DICOM constitue la source de référence pour une définition officielle de ces termes.

Association – canal de communication réseau établi entre les Entités d'application.

Attribut – unité d’information dans la définition d’un objet ; élément de donnée identifié par une balise. Cette information peut être une structure de donnée complexe (séquence), elle-même composée d’éléments de données de niveau inférieur. Exemples : ID du patient (0010,0020), Numéro d’accès (0008,0050).
Balise – identifiant de 32 bits d'un élément de données, représenté par une paire de nombres hexadécimaux de quatre chiffres, la valeur « groupe » et la valeur « élément ». Si la valeur « groupe » est impaire, la balise correspond à un élément de données privé (spécifique au fabricant). Exemples : (0010,0020) [ID du patient], (07FE,0010) [Données de pixels], (0019,0210) [Élément de données privé].

Classe de paire service-objet (SOP) – spécification du transfert par réseau ou support d'archivage (service) d'un type de données particulier (objet) ; unité fondamentale de spécification d'interopérabilité DICOM. Exemples : Service de stockage d'images échographiques, Syntaxe de compression, Syntaxe de transfert ou Informations sur le patient.

Contexte d'application – spécification du type de communication utilisé entre les Entités d'application. Exemple : protocole réseau DICOM.

Contexte de présentation – ensemble de services réseau DICOM utilisés dans le cadre d'une association, tel que négocié entre les Entités d'application ; comprend les Syntaxes abstraites et les Syntaxes de transfert.

Définition d'objet d'information (IOD) – ensemble d'Attributs spécifiques qui constituent un type d'objet de données ; ne représente pas une instance spécifique de l'objet de données, mais plutôt une classe d'objets de données similaires qui possèdent les mêmes propriétés. Les attributs peuvent être définis comme Obligatoires (Type 1), Requis mais éventuellement inconnus (Type 2) ou Facultatifs (Type 3) ; des conditions peuvent également limiter l'utilisation d'un Attribut (Types 1C et 2C). Exemples : IOD d'image IRM, IOD d'image CT, IOD de tâche d'impression.

Entité d'application (AE) – point de destination d'un échange d'informations DICOM, dont le réseau DICOM ou les logiciels d'interface de supports de stockage (logiciel qui envoie ou reçoit les messages ou objets d'information DICOM). Un seul dispositif peut avoir plusieurs Entités d'application.

Fournisseur de classe de service (SCP) – rôle d'une Entité d'application fournissant un service de réseau DICOM ; il s'agit généralement d'un serveur qui effectue les opérations demandées par une autre Entité d'application (Utilisateur de classe de service). Exemples : Système d'archivage et de communication d'images (SCP de stockage d'image et SCP de requête/récupération d'image), Système d'information radiologique (SCP de liste de travail de modalité).

Identifiant unique (UID) – chaîne « décimale pointillée » globalement unique qui identifie un objet spécifique ou une classe d'objets ; identifiant d'objet ISO-8824. Exemples : UID d'instance d'examen, UID de classe SOP, UID d'instance SOP.

Instance de paire de service-objet (SOP) – objet d'information ; occurrence spécifique d'information échangée dans une classe SOP. Exemples : une image radiographique spécifique.

JPEG (norme établie par un groupe d'experts sur la photographie) – ensemble de techniques de compression d'image standardisées, pouvant être utilisées par les applications DICOM.

Négociation – première phase de l’établissement d’une association permettant à des Entités d’application de convenir des types de données à échanger et de la manière dont ces données seront codées.

Profil d’application de support de stockage – spécification des objets d’informations et des encodages DICOM échangés sur des supports de stockage amovibles (par exemple, CD).

Profil de sécurité – ensemble de mécanismes, tels que le chiffrement, l’authentification des utilisateurs ou les signatures numériques, utilisés par une Entité d’application pour assurer la confidentialité, l’intégrité et/ou la disponibilité des données DICOM échangées.

Représentation de valeur (VR) – type de format d’un élément de données individuel DICOM ; par exemple : texte, nombre entier, nom d’une personne, code. Les objets d’informations DICOM peuvent être transmis soit avec une identification explicite du type de données pour chaque élément (VR explicite), soit sans identification explicite (VR implicite) ; avec VR implicite, l’application de réception doit rechercher le format de chaque élément de données dans un dictionnaire de données DICOM.

Syntaxe abstraite – informations que des applications ont convenu d’échanger, généralement équivalentes à une Classe de parité Service/Objet (Service/Object Pair - SOP). Exemples : Classe SOP de vérification, modèle d’information de liste de travail de modalité, classe SOP de recherche, classe SOP de stockage d’image de radiographie informatisée.

Syntaxe de transfert – encodage utilisé pour l’échange des objets d’informations et des messages DICOM. Exemples : images compressées JPEG, représentation d’une valeur explicite petit-boutiste.

Titre de l’entité d’application – nom connu d’une Entité d’application, utilisé pour identifier une application DICOM parmi d’autres applications DICOM sur le réseau.

Unité de données de protocole (PDU) – paquet (partie) d’un message DICOM envoyé sur le réseau. Les dispositifs doivent spécifier la taille maximale des paquets pouvant être reçus pour les messages DICOM.

Utilisateur de classe de service (SCU) – rôle d’une Entité d’application qui utilise un service de réseau DICOM ; il s’agit généralement d’un client. Exemples : modalité d’imagerie (SCU de stockage d’image, SCU de liste de travail de modalité), station de travail d’imagerie (SCU de requête/récupération d’image).

3.5. ÉLÉMENTS DE BASE DE LA COMMUNICATION DICOM

Cette section décrit la terminologie utilisée dans cette Déclaration de conformité pour le non-spécialiste. Les termes clés utilisés dans cette Déclaration de conformité sont signalés en *italique* ci-dessous. Cette section ne remplace pas une formation adéquate sur DICOM et simplifie considérablement la signification des termes DICOM.

Deux Entités d’application (dispositifs) qui veulent communiquer l’une avec l’autre sur un réseau utilisant le protocole DICOM doivent d’abord s’entendre sur plusieurs choses au cours d’une « poignée de main » réseau initiale. L’un des deux dispositifs doit initier une Association (une connexion à l’autre dispositif) et demander si des services, informations et encodages spécifiques peuvent être pris en charge par l’autre dispositif (Négociation).
DICOM spécifie plusieurs services réseau et types d'objets d'information, qui constituent chacun une Syntaxe abstraite pour la Négociation. DICOM spécifie également différentes méthodes d'encodage des données, appelées Syntaxes de transfert. Les Négociations permettent à l'Entité d'application initiatrice de proposer des combinaisons de Syntaxes abstraites et de Syntaxes de transfert à utiliser sur les Associations ; ces combinaisons sont appelées Contextes de présentation. L'Entité d'application réceptrice accepte les Contextes de présentation qu'elle prend en charge.

Pour chaque Contexte de présentation, la Négociation de l'association permet également aux dispositifs de définir les Rôles : l'Utilisateur de classe de service (SCU - client) d'une part, et le Fournisseur de classe de service (SCP - serveur) d'autre part. Normalement, le dispositif initiant la connexion est le SCU ; autrement dit, le système client appelle le serveur. Ce n'est toutefois pas toujours le cas.

La Négociation de l'association permet enfin d'échanger des paquets réseau (PDU) de taille maximale, des informations de sécurité et des options de service réseau (appelées informations de la Négociation étendue).

Les Entités d'application peuvent commencer à échanger des données après avoir négocié les paramètres de l'Association. Les échanges de données courants concernent des demandes de listes de travail et de listes d'images stockées, le transfert d'objets d'image et d'analyses (rapports structurés) et l'envoi d'images vers les imprimantes. Chaque unité de données échangeable est formatée par l'expéditeur conformément à la Définition d'objet d'information appropriée et envoyée à l'aide de la Syntaxe de transfert négociée. Il existe une Syntaxe de transfert par défaut que tous les systèmes doivent accepter, mais qui n'est pas toujours la plus efficace pour certains cas d'utilisation. Chaque transfert est explicitement reconnu par le destinataire par un Statut de réponse indiquant que les opérations de demande ou de récupération ont échoué, ont réussi ou sont toujours en cours.

Deux Entités d'application peuvent également communiquer par échange de supports de stockage (p. ex., CD-R). Puisqu'il n'y a aucune Négociation d'association possible, elles utilisent un Profil d'application de support de stockage qui spécifie une Syntaxe de transfert, une Syntaxe abstraite et un format d'échange « pré-négociés ».

3.6. ABRÉVIATION

Les abréviations et acronymes suivants sont utilisés dans ce document :

- **ACR**: American College of Radiology (Collège américain de radiologie)
- **DICOM**: Digital Imaging and Communications in Medicine (Imagerie et communications numériques en médecine)
- **NEMA**: National Electrical Manufacturers Association (Association nationale de fabricants de matériel électrique)
- **AE**: Application Entity (Entité d'application)
- **PDU**: Protocol Data Unit (Unité de données de protocole)
- **SCP**: Service Class Provider (Fournisseur de classe de service)
- **SCU**: Service Class User (Utilisateur de classe de service)
- **SOP**: Service-Object Pair (Paire service-objet)
- **TCP/IP**: Transmission Control Protocol/Internet Protocol (Protocole de contrôle de transmission/Protocole internet)
- **UID**: Unique Identifier (Identifiant unique)
- **LEE**: Little Endian Explicit (Valeur explicite petit-boutiste)
- **LEI**: Little Endian Implicit (Valeur implicite petit-boutiste)
- **BEE**: Big Endian Explicit (Valeur explicite gros-boutiste)
3.7. RÉFÉRENCES

<table>
<thead>
<tr>
<th>Annexe DICOM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4 : Spécifications des classes de service, disponible gratuitement sur http://medical.nema.org/</td>
</tr>
</tbody>
</table>

4. MISE EN RÉSEAU

4.1. MODÈLE D'IMPLÉMENTSATION

4.1.1. Flux de données d'application

![Schéma du flux de données d'application](image)

Figure 4.1-1

Schéma du flux de données d'application

L'Entité d'application de stockage de l'application Échographe Site~Rite® 8 DICOM envoie des images à une AE distante. Elle est associée à une activité locale concrète « Envoyer des images ». L'opération « Envoyer des images » est effectué sur demande de l'utilisateur pour chaque examen terminé ou pour des images spécifiques sélectionnées. Lorsque cette option est activée par un utilisateur via l'interface utilisateur fournie dans l'application Échographe Site~Rite® 8 DICOM, chaque
ensemble d'images marqué peut être immédiatement stocké dans une destination préconfigurée.

4.1.2. Définition fonctionnelle des AE

4.1.2.1. Définition fonctionnelle d'une Entité d'application de stockage

L'utilisateur sélectionne un ensemble d'images enregistrées localement dans l'application Échographe Site-Rite® 8 DICOM et sélectionne le bouton Transfert DICOM (Envoyer) pour activer l'AE de stockage. Une demande associée est envoyée à l'AE de destination préconfigurée et, après négociation fructueuse d'un Contexte de présentation, le transfert d'image démarre. Si l'association ne peut pas être établie, l'utilisateur en est immédiatement informé par une notification d'erreur dont les détails sont consignés. Par défaut, l'AE de stockage n'essayera pas d'initier une autre association en cas d'erreur.

4.1.2.2. Séquençage des activités pratiques

Figure 4.1-2

CONTRAINTES DE SÉQUENÇAGE

Dans des conditions de flux de travail normales, les contraintes de séquençage illustrées dans la figure 4.1-2 s'appliquent :

1. L'utilisateur saisit ou met à jour les informations sur le patient et l'examen.
2. L'utilisateur capture une image.
3. L'utilisateur sélectionne l'image et l'envoie.
4. Stockage des images acquises.

1. L'utilisateur saisit ou met à jour les informations sur le patient ou l'examen, le cas échéant.
2. L'utilisateur capture une image pendant l'examen.
3. L'utilisateur sélectionne une image dans l'emplacement de stockage local via l'interface utilisateur pour la transmission à l'AE distante et sélectionne le bouton « Transfert DICOM » dans l'interface utilisateur de l'application.
4. L'application lit les informations sur le patient saisies par l'utilisateur pour l'examen, génère des instances DICOM et envoie l'instance DICOM sélectionnée vers une AE distante.
4.2. SPÉCIFICATIONS DE L’AE

4.2.1. Spécification de l’Entité d’application de stockage

4.2.1.1. Classes SOP

L’application Échographe Site~Rite® 8 DICOM offre une conformité standard avec les classes SOP suivantes :

Tableau 4.2-1

<table>
<thead>
<tr>
<th>Nom de la classe SOP</th>
<th>UID de la classe SOP</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockage de l’image échographique</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Stockage de l’image de capture secondaire</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Oui</td>
<td>Non</td>
</tr>
</tbody>
</table>

4.2.1.2. Politiques d’association

4.2.1.2.1. Généralités

Le nom du contexte d'application standard DICOM pour DICOM 3.0 est toujours proposé :

Tableau 4.2-2

<table>
<thead>
<tr>
<th>Nom du contexte d’application</th>
<th>1.2.840.10008.3.1.1.1</th>
</tr>
</thead>
</table>

4.2.1.2.2. Nombre d’Associations

L’application Échographe Site~Rite® 8 DICOM initie une seule Association à la fois pour chaque destination pour laquelle une demande de transfert activée par l’utilisateur est traitée. Il ne peut y a voir qu’une seule tâche de transfert active au même moment, les autres restent en attente jusqu’à ce que la demande de transfert soit terminée ou échoue.

Tableau 4.2-3

<table>
<thead>
<tr>
<th>Nombre maximum d’Associations simultanées</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

4.2.1.2.3. Asynchronisme

L’application Échographe Site~Rite® 8 DICOM ne prend pas en charge la communication asynchrone (plusieurs transactions en attente sur une seule association).

Tableau 4.2-4

<table>
<thead>
<tr>
<th>Nombre maximum de transactions asynchrones en cours</th>
<th>1</th>
</tr>
</thead>
</table>

4.2.1.2.4. Implémentation des informations d'identification

Implémentation des informations pour cette Entité d'application :

Français
Tableau 4.2-5
Classe d’implémentation DICOM

| UID de la classe d’implémentation | 1.2.826.0.1.3680043.2.360.0.3.5.4 |

4.2.1.3. Politique d’initiation de l’Association

4.2.1.3.1. Activité – Envoyer des images

4.2.1.3.1.1. Description et séquence des activités

Un utilisateur peut sélectionner des images et demander à ce qu’elles soient envoyées vers une destination préconfigurée depuis l’interface utilisateur de l’application. Chaque demande est effectuée immédiatement après la sélection du bouton Envoyer et l’utilisateur est informé du statut du transfert.

Lorsqu’un transfert DICOM est activé par l’utilisateur, l’AE de stockage de l’application Échographe Site–Rite® 8 DICOM essaie d’établir une association avec un serveur de destination préconfiguré et initie une requête C-STORE pour stocker les images sélectionnées. Lorsque ce processus établit avec succès une Association à une Entité d’application distante, il transfère chaque instance sélectionnée, l’une après l’autre, via l'association ouverte. Le statut du transfert est indiqué à l'utilisateur via l'interface utilisateur. Si la réponse C-STORE de l'Application distante contient un statut autre que Réussite ou Avertissement, l'association est alors annulée et l'utilisateur est informé de l'échec. Le processus de transfert peut être redémarré par l'utilisateur à tout moment.

L’AE de stockage essaie d’initier une nouvelle Association afin d’émettre une requête C-STORE. Si la sélection de l'utilisateur contient plusieurs images, une association distincte est alors négociée pour chaque image dans l'ordre.

![Diagramme des interactions entre AE de stockage et AE distante](image)
Figure 4.2-6
Séquençage de l'activité – Envoi d’images

Le séquençage possible de l'interaction entre l'AE de stockage et une AE distance (Archive PACS ou Gestionnaire d'images prenant en charge la Classe de service de stockage en tant que SCP) est illustré à la figure 4.2-6 :

1. L'utilisateur sélectionne une ou plusieurs images à transférer.
2. Pour chaque image sélectionnée, l'AE de stockage ouvre une Association avec l'AE distante.
3. Une image sélectionnée par l'utilisateur est transmise à l'AE distante à l'aide de la requête C-STORE et l'AE distante répond par une réponse C-STORE (statut de réussite).
4. L'AE de stockage ferme l'Association.
5. L'AE de stockage traite l'image suivante en suivant les étapes 2-4 ci-dessus jusqu'à ce que toutes les images soient transférées.

4.2.1.3.1.2. Contextes de présentation proposés

L'application Échographe Site~Rite® 8 DICOM est capable de proposer n'importe quel Contexte de présentation indiqué dans le tableau suivant :

<table>
<thead>
<tr>
<th>Tableau 4.2-7</th>
<th>CONTEXTE DE PRÉSENTATION PROPOSÉ POUR L’ACTIVITÉ D’ENVOI DES IMAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Syntaxe abstraite</td>
</tr>
<tr>
<td>Stockage de l’image échographique</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
</tr>
<tr>
<td>Stockage de l’image de capture secondaire</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tableau 4.2-8</th>
<th>Syntaxe de transfert proposée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom de la syntaxe de transfert</td>
<td>UID de la syntaxe de transfert</td>
</tr>
<tr>
<td>VR implicite petit-boutiste (valeur par défaut DICOM)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>VR explicite petit-boutiste</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>VR explicite gros-boutiste</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tableau 4.2-9</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom de la syntaxe de transfert</td>
<td>UID de la syntaxe de transfert</td>
</tr>
<tr>
<td>JPEG avec perte</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG sans perte</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

Lors du processus de transfert d'une image, l'application Échographe Site~Rite® 8 DICOM inclura la même syntaxe abstraite (c'est-à-dire, la classe SOP de l'instance de l'image) dans plusieurs contextes de présentation. Chaque paire de Syntaxe abstraite et Syntaxe de transfert est unique et l'un des
contextes de présentation proposés contiendra la syntaxe de transfert par défaut DICOM (c'est-à-dire, VR implicite petit-boutiste) de la syntaxe abstraite. Un contexte de présentation avec Classe SOP de vérification est toujours inclus dans une requête associée par l'AE de stockage.

4.2.1.3.1.3. Classes SOP de stockage d'image de conformité spécifique SOP

Toutes les classes SOP de stockage d'image prises en charge par l'AE de stockage affichent le même comportement, sauf indication contraire, et sont décrites dans cette section.

En fonction de la Classe SOP de stockage de l'instance de l'image sélectionnée par l'utilisateur, l'AE de stockage envoie une requête d'Association à l'AE distante avec plusieurs contextes de présentation, contenant chacun une syntaxe de transfert différente prise en charge par l'AE de stockage. Si aucun contexte de présentation correspondant à la Classe SOP de stockage de l'instance de l'image sélectionnée n'est accepté, l'utilisateur est informé du statut d'échec.

Si plusieurs contextes de présentation sont acceptés par l'AE distante pour la même Syntaxe abstraite, l'AE de stockage choisit par défaut le contexte de présentation basé sur l'image sélectionnée (c'est-à-dire, Échographique ou Capture secondaire) avant le processus C-STORE.

Le comportement de l'AE de stockage face à code de statut dans la réponse C-STORE est résumé dans le tableau suivant :

<table>
<thead>
<tr>
<th>Tableau 4.2-10</th>
<th>Comportement face aux statuts de réponse C-STORE de stockage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Statut</td>
<td>Autre signification</td>
</tr>
<tr>
<td>Réussite</td>
<td>Réussite</td>
</tr>
<tr>
<td>Avertissement</td>
<td>Avertissement</td>
</tr>
<tr>
<td>*</td>
<td>Erreur</td>
</tr>
</tbody>
</table>

Le comportement de l'AE de stockage pendant l'échec de la communication est résumé dans le tableau suivant :

<table>
<thead>
<tr>
<th>Tableau 4.2-11</th>
<th>Comportement en cas d'échec de la communication de stockage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exception</td>
<td>Comportement</td>
</tr>
<tr>
<td>Expiration du délai</td>
<td>L'Association est annulée par A-ABORT et la tâche de transfert est considérée comme un échec. La raison est indiquée dans le fichier journal.</td>
</tr>
<tr>
<td>Association annulée par le SCP ou la couche réseau</td>
<td>La tâche de transfert est considérée comme un échec. La raison est indiquée dans le fichier journal.</td>
</tr>
</tbody>
</table>

Remarque : le fichier journal peut être enregistré sur un dispositif de stockage USB en sélectionnant « Maj+ctrl+L ».
Un transfert ayant échoué peut être redémarré par l'utilisateur. L’application n'essaie pas automatiquement de renvoyer les fichiers dont le transfert a échoué.

Le contenu des différentes instances SOP de stockage d’image créées par l’application Échographe Site~Rite® 8 DICOM est conforme à la définition IOD PS 3.3 Image de la norme DICOM et est décrit dans la section 6.1.

4.3. PROFILOS DE COMMUNICATION
L’application Échographe Site~Rite® 8 DICOM offre une prise en charge de la communication réseau TCP/IP DICOM V3.0 comme défini dans la section 8 de la norme DICOM.

4.3.1. Pile TCP/IP
L’application Échographe Site~Rite® 8 DICOM hérite de sa pile TCP/IP du système informatique sur lequel elle est exécutée.

4.3.1.1. Support physique
L’application Échographe Site~Rite® 8 DICOM est indifférente au support physique sur lequel la pile TCP/IP est exécutée ; elle hérite du support du système informatique sur lequel elle est exécutée.

4.4. EXTENSIONS/SPÉCIALISATIONS/PRIVATISATIONS
Non applicable.

4.5. CONFIGURATION

4.5.1. Mappage du titre de l’AE à l’adresse de présentation
Aucun titre d’AE par défaut n’est fourni. Les titres d’AE locale et distante ainsi que les numéros de port et les adresses hôtes du serveur doivent être configurés. Le titre d’AE locale et les informations de connexion distante configurés sont stockés dans le système pour une utilisation ultérieure par l’AE de stockage.

4.5.1.1. Titres de l’AE locale

4.5.1.2. Titres de l’AE distante

4.5.1.2.1. SCP distant
Le tableau suivant décrit les options de configuration pour le SCP distant :
4.6. PRISE EN CHARGE DES JEUX DE CARACTÈRES ÉTENDUS

L'application Échographe Site-Rite® 8 DICOM prend en charge les jeux de caractères suivants :
- ISO-IR 6 (par défaut) : Jeu Basic G0
- ISO-IR 100 : Alphabet latin No. 1

L'application Échographe Site-Rite® 8 DICOM prend également en charge l'utilisation du Répertoire de caractères suivant dans les Représentations de valeur applicables, comme Nom du patient, Description de l'examen et Description de la série.
- ISO_IR 144 (ISO 8859-5:1988 Jeu supplémentaire d'alphabet latin/cyrillique)

5. ÉCHANGE DE SUPPORT DE STOCKAGE

L'application Échographe Site-Rite® 8 DICOM ne prend pas en charge le stockage de fichiers.

6. ANNEXES

6.1. CONTENU IOD

6.1.1. Instance(s) SOP créée(s)

Le tableau 6.1-1 spécifie les attributs d'une image échographique/de capture secondaire transmise par l'AE de stockage de l'application Échographe Site-Rite® 8 DICOM.

Les tableaux suivants utilisent différentes abréviations. Les abréviations utilisées dans la colonne « Présence de … » sont les suivantes :

- **VNAP** : Value Not Always Present - Valeur pas toujours présente (l'attribut envoie une longueur zéro si aucune valeur n'est présente)
- **ANAP** : Attribute Not Always Present - Attribut pas toujours présent
- **TOUJOURS** : Toujours présent
- **VIDE** : L'attribut est envoyé sans valeur

Les abréviations utilisées dans la colonne « Source » sont les suivantes :

- **UTILISATEUR** : La source de la valeur de l'attribut vient de l'Utilisateur
- **AUTO** : La valeur de l'attribut est générée automatiquement
- **CONFIG** : La source de la valeur de l'attribut est un paramètre configurable
6.1.1.1. IOD de l’image de capture secondaire

<table>
<thead>
<tr>
<th>IE</th>
<th>Module</th>
<th>Référence</th>
<th>Présence du module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Nom du patient</td>
<td>Tableau 6.1-2</td>
<td>TOUJOURS</td>
</tr>
<tr>
<td>Examen</td>
<td>Examen général</td>
<td>Tableau 6.1-3</td>
<td>TOUJOURS</td>
</tr>
<tr>
<td>Série</td>
<td>Série générale</td>
<td>Tableau 6.1-4</td>
<td>TOUJOURS</td>
</tr>
<tr>
<td>Équipement</td>
<td>Équipement SC</td>
<td>Tableau 6.1-5</td>
<td>TOUJOURS</td>
</tr>
<tr>
<td>Image</td>
<td>Image générale</td>
<td>Tableau 6.1-6</td>
<td>TOUJOURS</td>
</tr>
<tr>
<td></td>
<td>Pixel d'image</td>
<td>Tableau 6.1-7</td>
<td>TOUJOURS</td>
</tr>
<tr>
<td></td>
<td>Image SC</td>
<td>Tableau 6.1-8</td>
<td>TOUJOURS</td>
</tr>
<tr>
<td></td>
<td>SOP commune</td>
<td>Tableau 6.1-9</td>
<td>TOUJOURS</td>
</tr>
</tbody>
</table>

6.1.1.2. Module commun

<table>
<thead>
<tr>
<th>Nom de l’attribut</th>
<th>Balise</th>
<th>VR</th>
<th>Valeur</th>
<th>Présence de la valeur</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom du patient</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Saisie de l’utilisateur ou fichier de script. 64 caractères maximum</td>
<td>TOUJOURS</td>
<td>UTILISATEUR</td>
</tr>
<tr>
<td>ID patient</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Saisie de l’utilisateur ou fichier de script. 64 caractères maximum</td>
<td>TOUJOURS</td>
<td>UTILISATEUR</td>
</tr>
<tr>
<td>Date de naissance du patient</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Toujours vide. Longueur zéro</td>
<td>VNAP</td>
<td>UTILISATEUR</td>
</tr>
<tr>
<td>Sexe du patient</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Saisie de l’utilisateur ou fichier de script</td>
<td>TOUJOURS</td>
<td>UTILISATEUR</td>
</tr>
</tbody>
</table>

Tableau 6.1-3

<table>
<thead>
<tr>
<th>Nom de l’attribut</th>
<th>Balise</th>
<th>VR</th>
<th>Valeur</th>
<th>Présence de la valeur</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID de l’instance d’examen</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Générée par l’échographe Site-Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Date de l’examen</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Toujours vide</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Heure de l’examen</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Toujours vide</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Numéro d’accès</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Toujours vide</td>
<td>VNAP</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tableau 6.1-4

<table>
<thead>
<tr>
<th>Nom de l’attribut</th>
<th>Balise</th>
<th>VR</th>
<th>Valeur</th>
<th>Présence de la valeur</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalité</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID de l’instance de la série</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Générée par l’échographe Site-Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
6.1.1.3. Modules d'image de capture secondaire

Tableau 6.1-5

<table>
<thead>
<tr>
<th>Nom de l'attribut</th>
<th>Balise</th>
<th>VR</th>
<th>Valeur</th>
<th>Présence de la valeur</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalité</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Type de conversion</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tableau 6.1-6

<table>
<thead>
<tr>
<th>Nom de l'attribut</th>
<th>Balise</th>
<th>VR</th>
<th>Valeur</th>
<th>Présence de la valeur</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d'image</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Générée par l'échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Description de la dérivation</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Générée par l'échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Compression d'image avec perte</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Générée par l'échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tableau 6.1-7
MODULE DE PIXEL D’IMAGE DES INSTANCES SOP SC CRÉÉES

<table>
<thead>
<tr>
<th>Nom de l’attribut</th>
<th>Balise</th>
<th>VR</th>
<th>Valeur</th>
<th>Présence de la valeur</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données de pixels</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Fichiers d’image sélectionnés par l’utilisateur (JPEG)</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Échantillons par pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Interprétation photométrique</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Configuration planaire</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Lignes</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Colonnes</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bits alloués</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bits stockés</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bit élevé</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Représentation pixels</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tableau 6.1-8
MODULE D’IMAGE SC DES INSTANCES SOP SC CRÉÉES

<table>
<thead>
<tr>
<th>Nom de l’attribut</th>
<th>Balise</th>
<th>VR</th>
<th>Valeur</th>
<th>Présence de la valeur</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date de la capture secondaire</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Date de création du fichier d’image (JPEG)</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Heure de la capture secondaire</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Heure de création du fichier d’image (JPEG)</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tableau 6.1-9
MODULE COMMUN SOP DES INSTANCES SOP SC CRÉÉES

<table>
<thead>
<tr>
<th>Nom de l’attribut</th>
<th>Balise</th>
<th>VR</th>
<th>Valeur</th>
<th>Présence de la valeur</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeu de caractères spécifique</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>« IOS_IR 100 » ou « ISO_IR 144 »</td>
<td>ANAP</td>
<td>CONFIG</td>
</tr>
<tr>
<td>UID de la classe SOP</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>« 1.2.840.10008.5.1.4.1.1.7 »</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID de l’instance SOP</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
<tr>
<td>Désignation de schéma d’encodage</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Générée par l’échographe Site~Rite® 8 DICOM</td>
<td>TOUJOURS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Fabricant :
Bard Access Systems, Inc.
605 North 5600 West
Salt Lake City, UT 84116
États-Unis

Téléphone : 1-801-522-5000
Service clients : 1-800-545-0890
Support technique/clinique : 1-800-443-3385
Fax : 1-801-522-4948
www.bardaccess.com

Bard et Site-Rite sont des marques commerciales et/ou des marques déposées de C. R. Bard, Inc. Toutes les autres marques commerciales sont la propriété de leurs propriétaires respectifs.

© 2015 C. R. Bard, Inc. Tous droits réservés.

Assemblé aux États-Unis

Français
DICOM-Konformitätsbericht für
Site~Rite® 8-DICOM-Ultraschallsystem

Name des Unternehmens: BARD Access Systems, Inc.
Name des Produkts: Site~Rite® 8-DICOM-Ultraschallsystem
Version: 1.0-rev. A-1
Interne Dokumentennummer: 1190674
Datum: 20. April 2015
1. KONFORMITÄTSBERICHT – ÜBERBLICK

In Tabelle 1-1 finden Sie einen Überblick über die durch die Site~Rite® 8-DICOM-Ultraschallsystemanwendung durchgeführten Netzwerkdienste.

<table>
<thead>
<tr>
<th>Tabelle 1-1</th>
<th>Netzwerkdienste</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP-Klassen</td>
<td>Benutzer des Dienstes (SCU)</td>
</tr>
<tr>
<td>Transfer</td>
<td>Ja</td>
</tr>
<tr>
<td>Ultraschallbild</td>
<td>Ja</td>
</tr>
<tr>
<td>Sekundär erfasstes Bild</td>
<td>Ja</td>
</tr>
</tbody>
</table>
2. INHALTSVERZEICHNIS

1. KONFORMITÄTSBERICHT – ÜBERBLICK ... 2
2. INHALTSVERZEICHNIS .. 3
3. EINFÜHRUNG ... 4
 3.1. REVISIONSVERLAUF ... 4
 3.2. ZIELGRUPPE ... 4
 3.3. ANMERKUNGEN .. 4
 3.4. BEGRIFFE UND DEFINITIONEN ... 4
 3.5. GRUNDLÄGEN DER DICOM-KOMMUNIKATION ... 6
 3.6. ABKÜRZUNGEN .. 7
 3.7. REFERENZEN ... 7
4. NETZWERK ... 8
 4.1. IMPLEMENTIERUNGSMODELL .. 8
 4.1.1. Anwendungsdatenfluss .. 8
 4.1.2. Definition der Funktionsweise von AE .. 8
 4.1.2.1. Definition der Funktionsweise der Speicherungs-Anwendungsentität 8
 4.1.2.2. Abfolge reeller Aktivitäten ... 9
 4.2. AE-Spezifikationen ... 9
 4.2.1. Spezifikation der Speicherungs-Anwendungsentität 9
 4.2.1.1. SOP-Klassen .. 9
 4.2.1.2. Zuordnungsrichtlinien .. 10
 4.2.1.2.1. Allgemeines .. 10
 4.2.1.2.2. Anzahl der Zuordnungen ... 10
 4.2.1.2.3. Asynchrone Natur .. 10
 4.2.1.2.4. Informationen zur Implementierungsidentifikation 10
 4.2.1.3. Zuordnungsinitierungsrichtlinie ... 10
 4.2.1.3.1. Aktivität – Bilder senden .. 10
 4.2.1.3.1.1. Beschreibung und Abfolge der Aktivitäten .. 10
 4.2.1.3.1.2. Vorgeschlagener Präsentationskontext .. 12
 4.2.1.3.1.3. SOP-spezifische Konformitätsbild-Speicherungs-SOP-Klassen 12
 4.3. KOMMUNIKATIONSPROFILE ... 13
 4.3.1. TCP/IP-Stapel ... 13
 4.3.1.1. Unterstützung physischer Medien .. 14
 4.4. ERWEITERUNGEN/SPEZIALISIERUNGEN/PRIVATISIERUNGEN 14
 4.5. KONFIGURATION ... 14
 4.5.1. Adresszuordnung zu AE-Titel/Präsentation ... 14
 4.5.1.1. Lokale AE-Titel .. 14
 4.5.1.2. Remote-AE-Titel .. 14
 4.5.1.2.1. Remote-SCP .. 14
 4.6. UNTERSTÜZUNG FÜR ERWEITERTE ZEICHENSÄTZE 14
5. MEDIENAUTAUSCH ... 15
6. ANHÄNGE .. 15
 6.1. IOD-INHALTE ... 15
 6.1.1. Erstellte SOP-Instanz(en) .. 15
 6.1.1.1. IOD des sekundär erfassten Bildes ... 15
 6.1.1.2. Allgemeines Modul ... 16
 6.1.1.3. Module für sekundär erfasstes Bild ... 16
3. EINFÜHRUNG

3.1. REVISIONSVERLAUF

<table>
<thead>
<tr>
<th>Version des Dokuments</th>
<th>Datum der Veröffentlichung</th>
<th>Autor</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24. März 2015</td>
<td>Tyler Durfee</td>
<td>Erste Version</td>
</tr>
</tbody>
</table>

3.2. ZIELGRUPPE

Dieses Dokument wurde für Personen verfasst, die wissen müssen, wie die Site-Rite® 8-DICOM-Ultraschallsystemanwendung in ihrer Gesundheitseinrichtung integriert wird. Dies umfasst sowohl diejenigen, die für die allgemeine Netzwerkrichtlinie und Architektur der Bildgebung verantwortlich sind, als auch Integratoren, die ein detailliertes Verständnis der DICOM-Funktionen des Produkts haben müssen. Dieses Dokument enthält einige grundlegende DICOM-Definitionen, sodass jeder Leser verstehen kann, wie dieses Produkt DICOM-Funktionen implementiert. Von Integratoren wird allerdings erwartet, dass sie die DICOM-Terminologie, die Beziehung zwischen den Tabellen in diesem Dokument und den Produktfunktionen sowie die Integration der Funktion mit anderen Geräten, die kompatible DICOM-Funktionen unterstützen, vollständig verstehen.

3.3. ANMERKUNGEN

Dieser Konformitätsbericht ist nicht als Ersatz für die Validierung mit anderen DICOM-Geräten zur Sicherstellung des korrekten Austauschs der gewünschten Informationen angedacht. Der Benutzer sollte stattdessen auf folgende wichtige Dinge achten:

- Der Vergleich verschiedener Konformitätsberichte ist nur der erste Schritt zur Beurteilung der Vernetzbarkeit und Interoperabilität des Produkts mit anderen DICOM-konformen Geräten.
- Es müssen Testverfahren definiert und umgesetzt werden, um das erforderliche Level an Interoperabilität mit den jeweiligen kompatiblen DICOM-Geräten gemäß den Vorgaben der Gesundheitseinrichtung zu validieren.

3.4. BEGRIFFE UND DEFINITIONEN

Für folgende in diesem Konformitätsbericht verwendeten Begriffe werden inoffizielle Definitionen angegeben. Der DICOM-Standard ist die maßgebliche Referenz für die offiziellen Definitionen dieser Begriffe.

Anwendungsentität (AE) – Ein Endpunkt eines DICOM-Informationaustauschs, einschließlich DICOM-Netzwerk- oder Medienschmittstellersoftware; d. h. die Software, die DICOM-Informationsojekte oder -nachrichten empfängt. Ein einzelnes Gerät kann mehrere Anwendungsentitäten haben.

Aushandlung – Die erste Phase des Aufbaus einer Zuordnung, in der Anwendungsentitäten sich hinsichtlich der auszutauschenden Datentypen und der Verschlüsselung der Daten verständigen.

Bezeichnung der Anwendungsentität – Der extern bekannte Name der Anwendungsentität, der zur Identifizierung einer DICOM-Anwendung gegenüber anderen DICOM-Anwendungen im Netzwerk verwendet wird.

Dienstklassen-Nutzer (SCU) – Rolle einer Anwendungsentität, die einen DICOM-Netzwerkdienst nutzt; üblicherweise ein Client. Beispiele: Bildmodalität (Bildspeicherungs-SCU und Modalitätsarbeitslisten-SCU), Bildgebungsarbeitsstation (Bildanfrage/-/abruf-SCU)

Informationsobjektdefinition (IOD) – Die festgelegten Attribute, aus denen ein Datenobjekttyp besteht; sie stellt keine spezifische Instanz des Datenobjekts sondern eine Klasse ähnlicher Datenobjekte mit denselben Eigenschaften dar. Die Attribute können als „zwingend“ (Typ 1), „erforderlich aber möglicherweise unbekannt“ (Typ 2) oder „wahlweise“ (Typ 3) festgelegt werden, und es kann Bedingungen geben, die mit der Verwendung eines Attributs (Typen 1C und 2C) verknüpft sind. Beispiele: MR-Bild-IOD, CT-Bild-IOD, Druckauftrags-IOD.

Markierung – Ein 32-bit-Identifikator für ein Datenelement, dargestellt als ein Paar von vier digitalen Hexadezimalzahlen, die „Gruppe“ und das „Element“. Wenn die „Gruppen“-Nummer ungerade ist, gehört die Markierung zu einem privaten (Hersteller-spezifischen) Datenelement. Beispiele: (0010,0020) [Patienten-ID], (07FE,0010) [Pixeldaten], (0019,0210) [privates Datenelement].
Medienanwendungsprofil – Die Spezifikation von DICOM-Informationsobjekten und der Verschlüsselung, die auf Wechselmedien (z. B. CDs) ausgetauscht werden.

Protokolldateneinheit (PDU) – Ein Paket (Teil) einer über das Netzwerk versandten DICOM-Nachricht. Geräte müssen die maximale Paketgröße spezifizieren, die sie für DICOM-Nachrichten empfangen können.

Sicherheitsprofil – Mechanismen wie Verschlüsselung, Benutzeroauthentifizierung oder digitale Unterschriften, die von einer Anwendungsentität verwendet werden, um die Vertraulichkeit, Integrität und/oder Verfügbarkeit ausgetauschter DICOM-Daten sicherzustellen.

Wertdarstellung (Value Representation; VR) – Der Formattype eines DICOM-Datenelements, wie z. B. Text, ein Integral, der Name einer Person oder ein Code. DICOM-Informationsobjekte können entweder mit expliziter Identifikation des Typs jedes Datenelements (explizite VR) oder ohne explizite Identifikation (implizite VR) übertragen werden; bei impliziter VR muss die empfangende Anwendung einen DICOM-Datenkatalog verwenden, um das Format jedes Datenelements zu ermitteln.

Zuordnung – Ein zwischen zwei Anwendungsentitäten eingerichteter Netzwerkcommunicationskanal.

3.5. GRUNDLAGEN DER DICOM-KOMMUNIKATION

Zwei Anwendungsentitäten (Geräte), die über eine Netzwerk mittels DICOM-Protokoll miteinander kommunizieren möchten, müssen sich zunächst „die Hand geben“, um verschiedene Dinge zu vereinbaren. Eines der beiden Geräte muss eine Zuordnung (eine Verbindung zu dem anderen Gerät) initiieren und fragen, ob bestimmte Dienste, Informationen und Verschlüsselung von dem anderen Gerät unterstützt werden (Aushandlung).

Die Zuordnungsaushandlung erlaubt den Geräten außerdem, für jeden Präsentationskontext Rollen zu vereinbaren – d. h. welches der Dienstklassen-Nutzer (SCU-Client) und welches der Dienstklassen-Provider (SCP-Server) ist. Gewöhnlich, jedoch nicht immer, wird die Verbindung vom SCU-Gerät initiiert, d. h. das Client-System ruft den Server an.

Die Zuordnungsaushandlung ermöglicht schließlich den Austausch von Netzwerkpaketen (PDU) in maximaler Größe, Sicherheitsinformationen und Optionen des Netzwerkdienstes (dies wird als erweiterte Verhandlungsinformationen bezeichnet).

3.6. ABKÜRZUNGEN

Folgende Akronyme und Abkürzungen werden in diesem Dokument verwendet:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology (Amerikanischer Radiologiebund)</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine (Digitale Bildverarbeitung und -kommunikation in der Medizin)</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association (Nationale Vereinigung der Elektrohersteller)</td>
</tr>
<tr>
<td>AE</td>
<td>Anwendungsentität</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit (Protokolldateneinheit)</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider (Dienstklassen-Provider)</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User (Dienstklassen-Nutzer)</td>
</tr>
<tr>
<td>SOP</td>
<td>Service-Object Pair (Dienst-Objekt-Paar)</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol (Übertragungskontrollprotokoll/Internetprotokoll)</td>
</tr>
<tr>
<td>UID</td>
<td>Unique Identifier (Eindeutiger Identifikator)</td>
</tr>
<tr>
<td>LEE</td>
<td>Little-Endian explizit</td>
</tr>
<tr>
<td>LEI</td>
<td>Little-Endian implizit</td>
</tr>
<tr>
<td>BEE</td>
<td>Big-Endian explizit</td>
</tr>
</tbody>
</table>

3.7. REFERENZEN

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: Dienstklassenspezifikationen sind kostenlos verfügbar unter http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. NETZWERK

4.1. IMPLEMENTIERUNGSMODELL

4.1.1. Anwendungsdatenfluss

4.1.2. Definition der Funktionsweise von AEs

4.1.2.1. Definition der Funktionsweise der Speicherungs-Anwendungsentität

Abb. 4.1-1
Diagramm zum Anwendungsdatenfluss

4.1.2. Definition der Funktionsweise von AEs

4.1.2.1. Definition der Funktionsweise der Speicherungs-Anwendungsentität

Der Benutzer wählt einen lokal in der Site~Rite® 8-Ultraschallsystem-DICOM-Anwendung gespeicherten Bildsatz aus und wählt die Schaltfläche DICOM-Transfer (Senden), um die Speicherungs-AE zu aktivieren. Eine Zuordnungsanfrage wird an die vorkonfigurierte Ziel-AE gesendet, und nach erfolgreicher Aushandlung eines Präsentationskontexts beginnt der Bildtransfer. Wenn die Zuordnung nicht hergestellt werden kann, wird der Benutzer sofort mit einer Fehlermeldung benachrichtigt und die Einzelheiten werden protokolliert. Standardmäßig versucht die Speicherungs-AE im Fall einer Fehlerbedingung nicht, eine weitere Zuordnung herzustellen.
4.1.2.2. Abfolge reeller Aktivitäten

Abbildung 4.1-2
ABFOLGEEINSCHRÄNKUNGEN

Unter den Bedingungen eines normalen Arbeitsablaufs gelten die in Abb. 4.1-2 dargestellten Abfolgeeinschränkungen.

1. Der Benutzer gibt, falls erforderlich, Patienten- und Studieninformationen ein bzw. aktualisiert sie.
2. Benutzer erfasst ein Bild während der Studie.
3. Der Benutzer wählt über die Benutzeroberfläche Bilder aus dem lokalen Speicher zur Übertragung an die Remote-AE aus und wählt „DICOM-Transfer“ auf der Benutzeroberfläche der Anwendung.
4. Die Anwendung liest die vom Benutzer für die Studie eingegebenen Patienteninformationen, generiert DICOM-Instanzen und sendet die ausgewählte DICOM-Instanz an eine Remote-AE.

4.2. AE-Spezifikationen

4.2.1. Spezifikation der Speicherungs-Anwendungsentität

4.2.1.1. SOP-Klassen
Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung ist standardmäßig konform mit folgenden SOP-Klassen:

<table>
<thead>
<tr>
<th>Name der SOP-Klasse</th>
<th>UID der SOP-Klasse</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speicherung des Ultraschallbildes</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>Speicherung des sekundär erfassten Bildes</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>
4.2.1.2. Zuordnungsrichtlinien

4.2.1.2.1. Allgemeines
Der Name für den DICOM-Standardanwendungskontext wird bei DICOM 3.0 stets vorgeschlagen:

Tabelle 4.2-2

<table>
<thead>
<tr>
<th>DICOM-Anwendungskontext für AE-Speicherung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name des Anwendungskontextes</td>
</tr>
</tbody>
</table>

4.2.1.2.2. Anzahl der Zuordnungen
Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung initiiert jeweils eine Zuordnung für jedes Ziel, für das eine vom Benutzer aktivierte Transferanfrage verarbeitet wird. Es wird jeweils nur ein Transfer-Job aktiv sein, die anderen bleiben ausstehend, bis die aktive Transferanfrage abgeschlossen oder fehlgeschlagen ist.

Tabelle 4.2-3

<table>
<thead>
<tr>
<th>Anzahl der für AE-Speicherung initiierten Zuordnungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Anzahl gleichzeitiger Zuordnungen</td>
</tr>
</tbody>
</table>

4.2.1.2.3. Asynchrone Natur
Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung unterstützt die asynchrone Kommunikation nicht (d. h. mehrere ausstehende Transaktionen über einzelne Zuordnung).

Tabelle 4.2-4

<table>
<thead>
<tr>
<th>Asynchrone Natur als SCU für Speicherung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Anzahl ausstehender asynchroner Transaktionen</td>
</tr>
</tbody>
</table>

4.2.1.2.4. Informationen zur Implementierungidentifikation
Die Implementierungsinformationen für diese Anwendungsentsität sind:

Tabelle 4.2-5

<table>
<thead>
<tr>
<th>DICOM-Implementierungsklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID der Implementierungsklasse</td>
</tr>
</tbody>
</table>

4.2.1.3. Zuordnungsinitierungsrichtlinie

4.2.1.3.1. Aktivität – Bilder senden

4.2.1.3.1.1. Beschreibung und Abfolge der Aktivitäten

Die Speicherungs-AE versucht, eine neue Zuordnung zu initiieren, um eine C-STORE-Anfrage zu versenden. Wenn die Auswahl des Benutzers verschiedene Bilder enthält, wird für jedes Bild in sequentieller Reihenfolge eine separate Zuordnung ausgehandelt.

Abbildung 4.2-6
Abfolge der Aktivitäten – Bilder senden

Die mögliche Abfolge von Interaktionen zwischen der Speicherungs-AE und einer Remote AE (PACS-Archiv oder Bildmanager mit Unterstützung der Speicherdienstklasse als SCP) ist in Abbildung 4.2-6 dargestellt:

1. Der Benutzer wählt eines oder mehrere Bilder, die transferiert werden sollen.
2. Für jedes ausgewählte Bild, öffnet die Speicherungs-AE eine Zuordnung mit der Remote-AE.
4. Die Speicherungs-AE schließt die Zuordnung.
5. Die Speicherungs-AE verarbeitet sequentiell die nächsten Bilder entsprechend den Schritten 2–4 oben, bis alle Bilder transferiert worden sind.
4.2.1.3.1.2. Vorgeschlagener Präsentationskontext

Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung ist in der Lage, jeden in der folgenden Tabelle aufgeführten Präsentationskontext vorzuschlagen:

<table>
<thead>
<tr>
<th>Präsentationskontext – Tabelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstrakte Syntax</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Speicherung des Ultraschallbildes</td>
</tr>
<tr>
<td>Speicherung des sekundär erfassten Bildes</td>
</tr>
</tbody>
</table>

4.2.1.3.1.3. SOP-spezifische Konformitätsbild-Speicherungs-SOP-Klassen

Alle von der Speicherungs-AE unterstützten Bildspeicherungs-SOP-Klassen verhalten sich gleich, falls nichts anderes angegeben wird, und werden zusammen in diesem Abschnitt beschrieben.

Wenn für dieselbe abstrakte Syntax mehrere Präsentationskontexte von der Remote-AE akzeptiert werden, wählt die Speicherungs-AE vor dem C-STORE-Prozess standardmäßig den Präsentationskontext abhängig vom ausgewählten Bild aus (d. h. Ultraschallbild oder sekundär erfasstes Bild).

Das Verhalten der Speicherungs-AE, wenn ein Statuscode in der C-STORE-Antwort gefunden wird, ist in der folgenden Tabelle zusammengefasst:

Tabelle 4.2-10
Verhalten je nach Speicherungs-C-STORE-Antwortstatus

<table>
<thead>
<tr>
<th>Dienst Status</th>
<th>Weitere Bedeutung</th>
<th>Fehlercode</th>
<th>Verhalten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfolg</td>
<td>Erfolg</td>
<td>0000</td>
<td>Der SCP hat die SOP-Instanz erfolgreich gespeichert. Wenn alle ausgewählten SOP-Instanzen in einer Transferanfrage den Status „Erfolg“ haben, dann wird der Transfer als erfolgreich betrachtet und der Benutzer benachrichtigt.</td>
</tr>
<tr>
<td>Warnung</td>
<td>Warnung</td>
<td>B000-BFFF</td>
<td>Bildübertragung wird als erfolgreich angesehen.</td>
</tr>
<tr>
<td>*</td>
<td>Fehler</td>
<td>Jeder andere Statuscode</td>
<td>Der SCP konnte die Instanz nicht speichern.</td>
</tr>
</tbody>
</table>

Das Verhalten der Speicherungs-AE während des Kommunikationsfehlers ist in der folgenden Tabelle zusammengefasst:

Tabelle 4.2-11
Verhalten bei Speicherungs-Kommunikationsfehler

<table>
<thead>
<tr>
<th>Ausnahme</th>
<th>Verhalten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuordnung von SCP oder Vermittlungsschicht abgebrochen</td>
<td>Der Transferauftrag wird als fehlgeschlagen angesehen. Der Grund wird dem Benutzer in der Log-Datei mitgeteilt.</td>
</tr>
</tbody>
</table>

Hinweis: Die Log-Datei kann mittels „Umschalttaste+Strg+L“ auf einem USB-Speichergerät gespeichert werden.

Ein fehlgeschlagener Transfer kann vom Benutzer erneut gestartet werden. Die Anwendung versucht nicht automatisch, die Dateien, deren Transfer fehlgeschlagen ist, erneut zu versenden.

Die Inhalte verschiedener Bildspeicherungs-SOP-Instanzen, die vom Site-Rite® 8-DICOM-Ultraschallsystem erstellt werden, entsprechen der PS 3.3 Bild-IOD-Definition des DICOM-Standards und werden in Abschnitt 6.1. beschrieben.

4.3. KOMMUNIKATIONSPROFILE
Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung unterstützt DICOM V3.0 TCP/IP-Netzwerkkommunikation laut Definition in Teil 8 des DICOM-Standards.

4.3.1. TCP/IP-Stapel
Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung übernimmt ihren TCP/IP-Stapel vom Computersystem, auf dem sie ausgeführt wird.
4.3.1.1. Unterstützung physischer Medien
Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung ist unabhängig vom physischen Medium, auf dem TCP/IP ausgeführt wird. Sie übernimmt das Medium von dem Computersystem, auf dem sie ausgeführt wird.

4.4. ERWEITERUNGEN/SPEZIALISIERUNGEN/PRIVATISIERUNGEN
Nicht zutreffend.

4.5. KONFIGURATION

4.5.1. Adresszuordnung zu AE-Titel/Präsentation

4.5.1.1. Lokale AE-Titel
Für die Speicherungs-AE kann nur ein lokaler AE-Titel konfiguriert werden. Diese Konfiguration kann vom Benutzer geändert werden.

4.5.1.2. Remote-AE-Titel

4.5.1.2.1. Remote-SCP
In der folgenden Tabelle werden die Konfigurationsoptionen für den Remote-SCP beschrieben:

<table>
<thead>
<tr>
<th>SCP-Einstellungen</th>
<th>Standard</th>
<th>Konfigurierbar</th>
<th>Konfigurationsoptionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel der Speicherungs-Anwendungsentität</td>
<td>Nein</td>
<td>Ja</td>
<td>N/A</td>
</tr>
<tr>
<td>Titel der Remote-Anwendungsentität</td>
<td>Nein</td>
<td>Ja</td>
<td>N/A</td>
</tr>
<tr>
<td>Remote-IP-Adresse</td>
<td>Nein</td>
<td>Ja</td>
<td>N/A</td>
</tr>
<tr>
<td>Remote-TCP-Port</td>
<td>Nein</td>
<td>Ja</td>
<td>N/A</td>
</tr>
<tr>
<td>Transfersyntax</td>
<td>Nein</td>
<td>Ja</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Kompression</td>
<td>Nein</td>
<td>Ja</td>
<td>Verlustfrei, verlustbehaftet, keine</td>
</tr>
</tbody>
</table>

4.6. UNTERSTÜTZUNG FÜR ERWEITERTE ZEICHENSÄTZE
Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung unterstützt folgende Zeichensätze:
- ISO-IR 6 (Standard): Einfacher G0-Satz
- ISO-IR 100: Lateinisches Alphabet Nr. 1
Darüber hinaus unterstützt die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung die Verwendung des folgenden Zeichen-Repertoires in den entsprechenden Wertdarstellungen wie z. B. Patientenname, Studienbeschreibung und Serienbeschreibung.
- ISO_IR 144 (ISO 8859-5:1988 Ergänzungssatz für das lateinische/kyrillische Alphabet)
5. MEDIENAUSTAUSCH
Die Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung unterstützt keine Medienspeicherung.

6. ANHÄNGE

6.1. IOD-INHALTE

6.1.1. Erstellte SOP-Instanz(en)
In Tabelle 6.1-1 werden die Attribute eines Ultraschall-/sekundär erfassten Bildes spezifiziert, das von der Speicherungs-AE der Site-Rite® 8-Ultraschallsystem-DICOM-Anwendung übertragen wird.

In der folgenden Tabelle werden verschiedene Abkürzungen verwendet. Die Abkürzungen, die in der Spalte „Vorhandensein von...“ verwendet werden, sind:

- **WNIV**: Wert nicht immer vorhanden (Attribut mit Länge Null versandt, wenn kein Wert vorhanden ist)
- **ANIV**: Attribut nicht immer Vorhanden
- **IMMER**: Immer vorhanden
- **LEER**: Attribut ohne Wert versandt

Die Abkürzungen, die in der Spalte „Quelle“ verwendet werden, sind:

- **BENUTZER**: Die Quelle des Attributwerts ist eine Benutzereingabe
- **AUTO**: Der Attributwert wird automatisch generiert
- **KONFIG**: Die Quelle des Attributwerts ist ein konfigurierbarer Parameter

6.1.1.1. IOD des sekundär erfassten Bildes

| IOD FÜR ERSTELLTE ULTRASCHALL- UND SEKUNDÄR ERFASSTE SOP-INSTANZEN |
|---------------------------------|-----------------|-----------------|-----------------|
| **IE** | **Modul** | **Referenz** | **Vorhandensein des Moduls** |
| Patient | Patientenname | Tabelle 6.1-2 | IMMER |
| Studie | Allgemeine Studie | Tabelle 6.1-3 | IMMER |
| Serie | Allgemeine Serie | Tabelle 6.1-4 | IMMER |
| Gerät | SC-Gerät | Tabelle 6.1-5 | IMMER |
| Bild | Allgemeines Bild | Tabelle 6.1-6 | IMMER |
| | Bild-Pixel | Tabelle 6.1-7 | IMMER |
| | SC-Bild | Tabelle 6.1-8 | IMMER |
| | SOP-Allgemein | Tabelle 6.1-9 | IMMER |
6.1.1.2. Allgemeines Modul

Tabelle 6.1-2

<table>
<thead>
<tr>
<th>Name des Attributs</th>
<th>Markierung</th>
<th>VR</th>
<th>Wert</th>
<th>Vorhandensein in des Werts</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientenname</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Benutzereingabe oder Skriptdatei. Höchstens 64 Zeichen</td>
<td>IMMER</td>
<td>BENUTZER</td>
</tr>
<tr>
<td>Patienten-ID</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Benutzereingabe oder Skriptdatei. Höchstens 64 Zeichen</td>
<td>IMMER</td>
<td>BENUTZER</td>
</tr>
<tr>
<td>Geburtsdatum des Patienten</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Immer leer. Länge Null</td>
<td>WNIV</td>
<td>BENUTZER</td>
</tr>
<tr>
<td>Geschlecht des Patienten</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Benutzereingabe oder Skriptdatei</td>
<td>IMMER</td>
<td>BENUTZER</td>
</tr>
</tbody>
</table>

Tabelle 6.1-3

<table>
<thead>
<tr>
<th>Name des Attributs</th>
<th>Markierung</th>
<th>VR</th>
<th>Wert</th>
<th>Vorhandensein des Werts</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studieninstanz-UID</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Erstellt vom Site~Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Studiendatum</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Immer leer</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Studienuhrzeit</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Immer leer</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Zugriffsziffer</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Immer leer</td>
<td>WNIV</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabelle 6.1-4

<table>
<thead>
<tr>
<th>Name des Attributs</th>
<th>Markierung</th>
<th>VR</th>
<th>Wert</th>
<th>Vorhandensein des Werts</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalität</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Serieninstanz-UID</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Erstellt vom Site~Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. Module für sekundär erfasstes Bild

Tabelle 6.1-5

<table>
<thead>
<tr>
<th>Name des Attributs</th>
<th>Markierung</th>
<th>VR</th>
<th>Wert</th>
<th>Vorhandensein des Werts</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalität</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Konversionstyp</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabelle 6.1-6
ALLGEMEINES BILDMODUL FÜR ERSTELLTE SC-SOP-INSTANZEN

<table>
<thead>
<tr>
<th>Name des Attributs</th>
<th>Markierung</th>
<th>VR</th>
<th>Wert</th>
<th>Vorhandensein des Werts</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bildtyp</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Erstellt vom Site-Rite® 8- DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Beschreibung der Ableitung</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Erstellt vom Site-Rite® 8- DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Verlustbehafrete Bildkomprimierung</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Erstellt vom Site-Rite® 8- DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabelle 6.1-7
BILDPIXELMODUL FÜR ERSTELLTE SC-SOP-INSTANZEN

<table>
<thead>
<tr>
<th>Name des Attributs</th>
<th>Markierung</th>
<th>VR</th>
<th>Wert</th>
<th>Vorhandensein des Werts</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixeldaten</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Vom Benutzer ausgewählte Bilddateien (d. h. JPEG)</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Proben pro Pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fotometrische Interpretation</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Planare Konfiguration</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Zeilen</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Spalten</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Zugewiesene Bits</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Gespeicherte Bits</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Hohes Bit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Pixel-Repräsentation</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Erstellt vom Site-Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabelle 6.1-8
SC-BILDMODUL FÜR ERSTELLTE SC-SOP-INSTANZEN

<table>
<thead>
<tr>
<th>Name des Attributs</th>
<th>Markierung</th>
<th>VR</th>
<th>Wert</th>
<th>Vorhandensein des Werts</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum der sekundären Erfassung</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Erstellungsdatum der Bilddatei (d. h. JPEG)</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Uhrzeit der sekundären Erfassung</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Erstellungsuhrzeit der Bilddatei (d. h. JPEG)</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabelle 6.1-9
ALLGEMEINES SOP-MODUL FÜR ERSTELLTE SC-SOP-INSTANZEN

<table>
<thead>
<tr>
<th>Name des Attributs</th>
<th>Markierung</th>
<th>VR</th>
<th>Wert</th>
<th>Vorhandensein des Werts</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifischer Zeichensatz</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>„IOS_IR 100“ oder „ISO_IR_144“</td>
<td>ANIV</td>
<td>KONFIG</td>
</tr>
<tr>
<td>UID der SOP-Klasse</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>„1.2.840.10008.5.1.4.1.1.7“</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>SOP-Instanz-UID</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Erstellt vom Site~Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bezeichner des Codierungsschemas</td>
<td>(0008,0010)</td>
<td>SH</td>
<td>Erstellt vom Site~Rite® 8-DICOM-Ultraschallsystem</td>
<td>IMMER</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Dichiarazione di conformità DICOM per Sistema ecografico Site~Rite® 8 DICOM

Nome azienda: BARD Access Systems, Inc.

Nome prodotto: Sistema ecografico Site~Rite® 8 DICOM

Versione: 1.0-rev. A-1

Numero documento interno: 1190674

Data: 20 aprile 2015
1. PANORAMICA DELLA DICHIARAZIONE DI CONFORMITÀ

La funzionalità DICOM del Sistema ecografico Site~Rite® 8 accetta le immagini raster JPEG standard provenienti dal dispositivo ecografico e genera istanze DICOM di immagini ecografiche per immagini ecografiche e istanze DICOM di acquisizione secondaria a supporto delle immagini di forma d’onda ECG basate sulle informazioni paziente selezionate. Inoltre, consente all’utente di immettere manualmente le informazioni del paziente/studio. Implementa altresì i servizi DICOM necessari al trasferimento di immagini in un archivio PACS.

La tabella 1-1 offre una panoramica dei servizi di rete svolti dall’applicazione DICOM del Sistema ecografico Site~Rite® 8.

<table>
<thead>
<tr>
<th>Tabella 1-1</th>
<th>Servizio di rete</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP Classes</td>
<td>Utente del sistema (SCU, User of Service)</td>
</tr>
<tr>
<td>Trasferimento</td>
<td></td>
</tr>
<tr>
<td>Immagine ecografica</td>
<td>Si</td>
</tr>
<tr>
<td>Immagine di acquisizione secondaria</td>
<td>Si</td>
</tr>
</tbody>
</table>
2. INDICE

<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Titolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PANORAMICA DELLA DICHIARAZIONE DI CONFORMITÀ</td>
</tr>
<tr>
<td>2.</td>
<td>INDICE</td>
</tr>
<tr>
<td>3.</td>
<td>INTRODUZIONE</td>
</tr>
<tr>
<td>3.1.</td>
<td>CRONOLOGIA REVISIONI</td>
</tr>
<tr>
<td>3.2.</td>
<td>DESTINATARI</td>
</tr>
<tr>
<td>3.3.</td>
<td>OSSERVAZIONI</td>
</tr>
<tr>
<td>3.4.</td>
<td>TERMINI E DEFINIZIONI</td>
</tr>
<tr>
<td>3.5.</td>
<td>NOZIONI DI BASE DELLE COMUNICAZIONI DICOM</td>
</tr>
<tr>
<td>3.6.</td>
<td>ABBREVIAZIONI</td>
</tr>
<tr>
<td>3.7.</td>
<td>RIFERIMENTI</td>
</tr>
<tr>
<td>4.</td>
<td>RETI</td>
</tr>
<tr>
<td>4.1.</td>
<td>MODELLO DI IMPLEMENTAZIONE</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Flusso dati di applicazione</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Definizione funzionale di AE</td>
</tr>
<tr>
<td>4.1.2.1.</td>
<td>Definizione funzionale di Storage Application Entity</td>
</tr>
<tr>
<td>4.1.2.2.</td>
<td>Sequenziamento delle attività del mondo reale</td>
</tr>
<tr>
<td>4.2.</td>
<td>SPECIFICHE AE</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Specifica della Storage Application Entity</td>
</tr>
<tr>
<td>4.2.1.1.</td>
<td>SOP Classes</td>
</tr>
<tr>
<td>4.2.1.2.</td>
<td>Politiche di associazione</td>
</tr>
<tr>
<td>4.2.1.2.1</td>
<td>Generale</td>
</tr>
<tr>
<td>4.2.1.2.2</td>
<td>Numero di associazioni</td>
</tr>
<tr>
<td>4.2.1.2.3</td>
<td>Natura asincrona</td>
</tr>
<tr>
<td>4.2.1.2.4</td>
<td>Informazioni di identificazione dell’implementazione</td>
</tr>
<tr>
<td>4.2.1.3.</td>
<td>Politica di iniziazione associazione</td>
</tr>
<tr>
<td>4.2.1.3.1</td>
<td>Attività – Invio immagini</td>
</tr>
<tr>
<td>4.2.1.3.1.1</td>
<td>Descrizione e sequenza di attività</td>
</tr>
<tr>
<td>4.2.1.3.1.2</td>
<td>Conesti di presentazione proposti</td>
</tr>
<tr>
<td>4.2.1.3.1.3</td>
<td>SOP Specific Conformance Image Storage SOP Classes</td>
</tr>
<tr>
<td>4.3.</td>
<td>PROFILI DELLE COMUNICAZIONI</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Stack TCP/IP</td>
</tr>
<tr>
<td>4.3.1.1.</td>
<td>Assistenza del supporto fisico</td>
</tr>
<tr>
<td>4.4.</td>
<td>ESTENSIONI/SPECIALIZZAZIONI/PRIVATIZZAZIONI</td>
</tr>
<tr>
<td>4.5.</td>
<td>CONFIGURAZIONE</td>
</tr>
<tr>
<td>4.5.1.</td>
<td>Titolo/Presentazione Indirizzo Mappatura dell’AE</td>
</tr>
<tr>
<td>4.5.1.1.</td>
<td>Titoli del Local AE</td>
</tr>
<tr>
<td>4.5.1.2.</td>
<td>Titoli del Remote AE</td>
</tr>
<tr>
<td>4.5.1.2.1</td>
<td>SCP remoto</td>
</tr>
<tr>
<td>4.6.</td>
<td>SUPPORTO PER SET DI CARATTERI ESTESI</td>
</tr>
<tr>
<td>5.</td>
<td>INTERSCAMBIO SUPPORTO</td>
</tr>
<tr>
<td>6.</td>
<td>ALLEGATI</td>
</tr>
<tr>
<td>6.1.</td>
<td>CONTENUTI IOD</td>
</tr>
<tr>
<td>6.1.1.</td>
<td>Istanze delle SOP create</td>
</tr>
<tr>
<td>6.1.1.1.</td>
<td>IOD dell’immagine di acquisizione secondaria</td>
</tr>
<tr>
<td>6.1.1.2.</td>
<td>Modulo comune</td>
</tr>
<tr>
<td>6.1.1.3.</td>
<td>Moduli di immagine di acquisizione secondaria</td>
</tr>
</tbody>
</table>
3. INTRODUZIONE

3.1. CRONOLOGIA REVISIONI

<table>
<thead>
<tr>
<th>Versione documento</th>
<th>Data di emissione</th>
<th>Autore</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 marzo 2015</td>
<td>Tyler Durfee</td>
<td>Versione iniziale</td>
</tr>
</tbody>
</table>

3.2. DESTINATARI

Questo documento è destinato a coloro i quali hanno bisogno di comprendere come l’applicazione DICOM del Sistema ecografico Site-Rite® 8 possa integrarsi nella propria struttura sanitaria. Sono compresi i responsabili della politica e dell’architettura della rete di imaging globale, nonché gli addetti all’integrazione del prodotto a cui serve una conoscenza dettagliata delle funzionalità DICOM del prodotto. Questo documento contiene alcune definizioni DICOM di base in modo che ogni lettore possa essere in grado di comprendere in che modo questo prodotto implementi le funzionalità DICOM. Tuttavia, gli addetti all’integrazione sono tenuti a comprendere appieno tutta la terminologia DICOM, in che modo le tabelle di questo documento si rapportano alla funzionalità del prodotto e come tale funzionalità si integra con altri dispositivi che supportano funzionalità compatibili con DICOM.

3.3. OSSERVAZIONI

La finalità della presente Dichiarazione di conformità DICOM è quella di agevolare l’integrazione tra il DICOM del Sistema ecografico Site-Rite® 8 e altri prodotti DICOM. La Dichiarazione di conformità va letta e compresa congiuntamente allo standard DICOM. DICOM di per sé non garantisce l’interoperabilità. La Dichiarazione di conformità, tuttavia, facilita un confronto di primo livello per l’interoperabilità tra le diverse applicazioni che supportano le funzionalità compatibili con DICOM.

Questa Dichiarazione di conformità non deve ritenersi sostitutiva della validazione con altre apparecchiature DICOM come garanzia di uno scambio corretto delle informazioni previste. Infatti, è opportuno che l’utente sia a conoscenza delle seguenti importanti questioni:

— Il confronto tra Dichiarazioni di conformità diverse è solo il primo passo verso la valutazione dell’interconnessione e dell’interoperabilità del prodotto con altre apparecchiature conformi a DICOM.
— Andrebbero definite e attuate procedure di prova al fine di validare il livello di interoperabilità richiesto con specifiche apparecchiature compatibili con DICOM, come stabilito dalla struttura sanitaria.

3.4. TERMINI E DEFINIZIONI

Sono fornite definizioni informali per i termini utilizzati di seguito nella presente Dichiarazione di conformità. Lo Standard DICOM è la fonte autorevole per le definizioni formali di questi termini.

Associazione – un canale di comunicazione di rete stabilito tra Entità di applicazione.
Attributo – un’unità di informazione in una definizione di oggetto; un elemento di dati identificato da un tag. Le informazioni si presentano come una struttura di dati complessa (Sequenza), a sua volta composta da elementi di dati di livello inferiore. Esempi: ID paziente (0010, 0020), Numero di registrazione (0008,0050).
Classe di coppia servizio/oggetto (SOP) – la specifica del trasferimento della rete o del supporto (servizio) di un particolare tipo di dati (oggetto); l’unità fondamentale della specifica di interoperabilità DICOM. Esempi: Servizio di archiviazione immagine ecografica, sintassi di compressione, sintassi di trasferimento o informazioni paziente.

Contesto di applicazione – la specifica del tipo di comunicazione utilizzato tra Entità di applicazione. Esempio: protocollo di rete DICOM.

Contesto di presentazione – l’insieme dei servizi di rete DICOM utilizzati per un’associazione, come negoziato tra Entità di applicazione; include le Sintassi astratte e le Sintassi di trasferimento.

Definizione di Oggetto di informazione (IOD, Information Object Definition) – l’insieme di attributi specificato che costituisce un tipo di oggetto di dati; non rappresenta un’istanza specifica dell’oggetto di dati, quanto piuttosto una classe di oggetti di dati simili avente le stesse proprietà. È possibile indicare gli attributi come Obbligatori (Tipo 1), Necessari ma eventualmente sconosciuti (Tipo 2) o Opzionali (Tipo 3) e potrebbero essere presenti condizioni associate con l’utilizzo di un Attributo (Tipi 1C e 2C). Esempi: IOD immagine MR, IOD immagine CT, IOD lavoro di stampa.

Entità di applicazione (AE, Application Entity) – un punto finale di uno scambio di informazioni DICOM, compreso il software di interfaccia supporto o rete DICOM; vale a dire, il software di invio o ricezione degli oggetti di informazione o dei messaggi DICOM. Un unico dispositivo può avere più Entità di applicazione.

Identificatore univoco (UID, Unique Identifier) – una stringa “decimale puntata” univoca universale che identifica un oggetto specifico o una classe di oggetti; un identificatore di oggetto ISO-8824. Esempi: Study Instance UID, SOP Class UID, SOP Instance UID.

Istanza di coppia servizio/oggetto (SOP) – un oggetto di informazione; un evento specifico di informazione scambiato in una SOP Class. Esempi: un’immagine ecografica specifica.

Joint Photographic Experts Group (JPEG) – un insieme di tecniche di compressione immagini standardizzate, disponibili per applicazioni DICOM.

Modulo – un insieme di Attributi all’interno di una Definizione di oggetto di informazione in relazione logica tra loro. Esempio: il modulo paziente comprende Nome paziente, ID paziente, Data di nascita paziente e Sesso paziente.

Negoziazione – prima fase di definizione dell’associazione che consente all’Entità di applicazione di concordare i tipi di dati da scambiare e quelli da codificare.

Profilo di applicazione supporto – la specifica degli oggetti di informazione DICOM e le codifiche scambiate su un supporto rimovibile (es., CD).

Profilo di sicurezza – una serie di meccanismi, come la crittografia, l’autenticazione dell’utente o le firme digitali, utilizzate da un’Entità di applicazione per garantire la riservatezza, l’integrità e/o la disponibilità dei dati DICOM scambiati.

Rappresentazione di valore (VR, Value Representation) – il tipo di formato di un elemento di dati DICOM singolo, come ad esempio un testo, un numero intero, il nome di una persona o un codice. È possibile trasmettere gli oggetti di informazione DICOM sia con identificazione esplicita del tipo di ciascun elemento di dati (VR esplicita) oppure senza identificazione esplicita (VR implicita); con la VR implicita, l’applicazione ricevente ha bisogno di utilizzare un dizionario di dati DICOM per la ricerca del formato di ciascun elemento di dati.
Sintassi astratta – l’informazione che si è concordato di scambiare tra le applicazioni, in genere equivalente a una Classe di coppia servizio/oggetto (SOP Class). Esempi: Verification SOP Class, Modality Worklist Information Model Find SOP Class, Computed Radiography Image Storage SOP Class.

Sintassi di trasferimento – la codifica utilizzata per lo scambio di messaggi e oggetti di informazione DICOM. Esempi: JPEG compressi (immagini), rappresentazione di valore esplicito Little endian.

Tag – un identificatore a 32 bit per un elemento di dati, rappresentato da una coppia di numeri esadecimali a quattro cifre, il “gruppo” e l’“elemento”. Se il numero del “gruppo” è dispari, il tag è un elemento di dati privato (specifico del costruttore). Esempi: (0010,0020) [ID paziente], (07FE,0010) [Dati pixel], (0019,0210) [elemento dati privato].

Titolo entità di applicazione – il nome conosciuto all’esterno di una Entità di applicazione, utilizzato per identificare un’applicazione DICOM rispetto ad altre applicazioni DICOM sulla rete.

Unità dati di protocollo (PDU, Protocol Data Unit) – un pacchetto (porzione) di un messaggio DICOM inviato attraverso la rete. È necessario che i dispositivi specifichino quali dimensioni massime di pacchetti i messaggi DICOM sono in grado di ricevere.

3.5. NOZIONI DI BASE DELLE COMUNICAZIONI DICOM

Questa sezione descrive la terminologia utilizzata in questa Dichiarazione di conformità per i non specialisti. I termini chiave utilizzati nella Dichiarazione di conformità sono evidenziati in corsivo qui di seguito. Questa sezione non deve ritenersi sostitutiva della formazione sul DICOM ma offre molte semplificazioni sui significati dei termini DICOM.

Due Entità di applicazione (dispositivi) che vogliono comunicare tra loro su una rete che utilizza il protocollo DICOM hanno bisogno di concordare prima alcuni punti nel corso di una “stretta di mano” di rete iniziale. È necessario che uno dei due dispositivi avvii una Associazione (una connessione a un altro dispositivo) e chieda se l’altro dispositivo è in grado di supportare servizi, informazioni specifici e la codifica (Negoziazione).

DICOM specifica una serie di servizi di rete e tipi di oggetti di informazione, ciascuno dei quali è denominato Sintassi astratta per la Negoziazione. DICOM specifica anche una varietà di metodi per la codifica dei dati, indicati come Sintassi di trasferimento. La Negoziazione consente all’Entità di applicazione di avvio di proporre combinazioni di Sintassi astratta e Sintassi di trasferimento da utilizzare nell’associazione; tali combinazioni sono denominate Contesti di presentazione. L’Entità di applicazione di ricezione accetta i Contesti di presentazione che supporta.

Per ciascun Contesto di presentazione, la Negoziazione di associazione consente anche che i dispositivi concordino i Ruoli – qual è l’Utente della classe di servizio (SCU - client) e quale il Fornitore della classe di servizio (SCP - server). Normalmente il dispositivo di avvio della connessione è il SCU, vale a dire, il sistema client contatta il server, anche se non sempre.

La Negoziazione di associazione consente infine lo scambio di pacchetti di rete (PDU) di dimensioni massime, di informazioni di sicurezza e di opzioni di servizi di rete (denominate informazioni di Negoziazione estesa).
Dopo aver negoziato i parametri di associazione, le Entità di applicazione possono ora iniziare lo scambio di dati. Gli scambi di dati comuni includono le query per le liste di lavoro e gli elenchi di immagini archiviate, il trasferimento di analisi e oggetti di immagine (rapporti strutturati) e l’invio di immagini a stampanti di pellicole. Ciascuna unità intercambiabile di dati viene formattata dal mittente in base alla Definizione di oggetto di informazione e inviata utilizzando la Sintassi di trasferimento negoziata. Esiste una Sintassi di trasferimento predefinita accettata da tutti i sistemi, tuttavia potrebbe non essere la più efficace da utilizzare in taluni casi. Ciascun trasferimento è esplicitamente riconosciuto dal ricevitore con uno Stato di risposta indicante la riuscita, la non riuscita o la progressione delle operazioni di ricerca o recupero.

Due Entità di applicazione possono comunicare tra loro attraverso lo scambio di supporti (ad esempio un CD-R). Poiché nessuna Negoziazione di associazione è possibile, entrambi utilizzano un Profilo di applicazione multimediale che specifica i formati dei supporti di scambio “pre-negoziati”, la Sintassi astratta e la Sintassi di trasferimento.

3.6. ABBREVIAZIONI

In questo documento vengono utilizzati gli acronimi e le abbreviazioni di seguito:

<table>
<thead>
<tr>
<th>Acronimo</th>
<th>Definizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>Collegio americano di radiologia</td>
</tr>
<tr>
<td>DICOM</td>
<td>Imaging digitale e comunicazione in medicina</td>
</tr>
<tr>
<td>NEMA</td>
<td>Associazione nazionale dei produttori di materiale elettrico</td>
</tr>
<tr>
<td>AE</td>
<td>Application Entity (Entità di applicazione)</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit (Unità di dati protocollo)</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider (Fornitore della classe di servizio)</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User (Utente della classe di servizio)</td>
</tr>
<tr>
<td>SOP</td>
<td>Service-Object Pair (Coppia servizio-oggetto)</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol (Protocollo di controllo trasmissione/Protocollo internet)</td>
</tr>
<tr>
<td>UID</td>
<td>Unique Identifier (Identificatore univoco)</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian Explicit (Esplicito Little endian)</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit (Implicito Little endian)</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian Explicit (Esplicito Big endian)</td>
</tr>
</tbody>
</table>

3.7. RIFERIMENTI

<table>
<thead>
<tr>
<th>Riferimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: Service Class Specifications, disponibile gratuitamente su http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. RETI

4.1. MODELLO DI IMPLEMENTAZIONE

4.1.1. Flusso dati di applicazione

La Storage Application Entity dell’applicazione DICOM del Sistema ecografico Site-Rite® 8 invia le immagini a un Remote AE. È associata a un’attività del mondo reale locale di “Invio immagini”. Su richiesta dell’utente, “Invio immagini” viene eseguito per ciascuno studio completato o per immagini specifiche selezionate. Quando attivata da un utente tramite l’interfaccia utente fornita nell’applicazione DICOM del Sistema ecografico Site-Rite® 8, è possibile l’archiviazione immediata di ciascuna serie di immagini contrassegnate presso una destinazione predefinita.

4.1.2. Definizione funzionale di AE

4.1.2.1. Definizione funzionale di Storage Application Entity

L’utente seleziona una serie di immagini localmente archiviate nell’applicazione DICOM del Sistema ecografico Site-Rite® 8 e seleziona il pulsante di Trasferimento DICOM (Invio) per attivare lo Storage AE. Una richiesta associata viene inviata all’AE di destinazione predefinita e avviato il trasferimento dell’immagine alla riuscita della negoziazione di un Contesto di presentazione. Se è impossibile stabilire l’associazione, l’utente riceve immediatamente una notifica di errore e i dettagli vengono registrati. Al verificarsi di una condizione di errore, per impostazione predefinita, lo Storage AE non tenta l’avvio di un’altra associazione.
4.1.2.2. Sequenziamento delle attività del mondo reale

Figura 4.1-2
VINCOLI DI SEQUENZIAMENTO

In condizioni di normale flusso di lavoro, si applicano i vincoli di sequenziamento illustrati nella Figura 4.1-2:

1. L'utente immette o aggiorna le informazioni del paziente e dello studio quando applicabile.
2. L'utente acquisisce un’immagine durante lo studio.
3. L’utente seleziona l’immagine e la invia all'interno dell'interfaccia utente dell'applicazione.
4. L’applicazione legge le informazioni del paziente immesse dall’utente per lo studio, genera istanze DICOM e invia le istanze DICOM selezionate a un Remote AE.

4.2. SPECIFICHE AE

4.2.1. Specifica della Storage Application Entity

4.2.1.1. SOP Classes

L’applicazione DICOM del Sistema ecografico Site−Rite® 8 fornisce conformità standard per le seguenti SOP Classes:

<table>
<thead>
<tr>
<th>SOP Class Name</th>
<th>SOP Class UID</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archiviazione immagine ecografica</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Si</td>
<td>No</td>
</tr>
<tr>
<td>Archiviazione immagine di acquisizione secondaria</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Si</td>
<td>No</td>
</tr>
</tbody>
</table>
4.2.1.2. Politiche di associazione

4.2.1.2.1. Generale
Per DICOM 3.0 viene sempre proposto il nome del contesto di applicazione dello standard DICOM:

Tabella 4.2-2
Contesto di applicazione DICOM per lo Storage AE

| Nome contesto di applicazione | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Numero di associazioni
L'applicazione DICOM del Sistema ecografico Site~Rite® 8 avvia una associazione alla volta per ciascuna destinazione per la quale è in elaborazione una richiesta di trasferimento attivata dall’utente. Si attiva solo un processo di trasferimento alla volta, gli altri rimangono in sospeso fino al completamento o alla non riuscita della richiesta di trasferimento attiva.

Tabella 4.2-3
Numero di associazioni avviate per lo Storage AE

| Numero massimo di associazioni simultanee | 1 |

4.2.1.2.3. Natura asincrona
L'applicazione DICOM del Sistema ecografico Site~Rite® 8 non supporta le comunicazioni asincrone (vale a dire più transazioni in sospeso su un’associazione singola).

Tabella 4.2-4
Natura asincrona come SCU per l’archiviazione

| Numero massimo di transazioni asincrone in sospeso | 1 |

4.2.1.2.4. Informazioni di identificazione dell’implementazione
Le informazioni di implementazione di questa Entità di applicazione sono:

Tabella 4.2-5
Classe di implementazione DICOM

| UID della classe di implementazione | 1.2.826.0.1.3680043.2.360.0.3.5.4 |
4.2.1.3. Politica di iniziazione associazione

4.2.1.3.1. Attività – Invio immagini

4.2.1.3.1.1. Descrizione e sequenza di attività

Un utente può selezionare le immagini e richiederne l'invio a una destinazione predefinita dall'interfaccia utente dell'applicazione. Ciascuna richiesta viene eseguita immediatamente al momento della selezione del tasto invio e l'utente viene avvisato sullo stato del trasferimento.

Quando un trasferimento DICOM viene attivato dall'utente, lo Storage AE dell'applicazione DICOM del Sistema ecografico Site–Rite® 8 tenta di stabilire un'associazione con il server di destinazione predefinito e avvia una richiesta di C-STORE per archiviare le immagini selezionate. Quando questo processo stabilisce correttamente un'associazione a un'Entità di applicazione remota, ciascuna istanza selezionata viene trasferita, l'una dopo l'altra, tramite l'associazione aperta. Lo stato del trasferimento viene segnalato all'utente tramite l'interfaccia utente. Se la risposta di C-STORE dall'applicazione remota contiene uno stato diverso da Riuscito o Avvertenza, allora l'associazione viene interrotta e l'utente informato dello stato di non riuscito. L'utente può riavviare il processo di trasferimento in qualsiasi momento.

Lo Storage AE tenta di avviare una nuova associazione, al fine di emettere una richiesta di C-STORE. Se la selezione dell'utente contiene più immagini, quindi viene negoziata un'associazione separata per ciascuna immagine in ordine sequenziale.

Figura 4.2-6
Sequenziamento dell’attività – Invio immagini
L’eventuale sequenziamento di interazione tra lo Storage AE e un Remote AE (Archivio PACS o Gestore di immagini di supporto per la Storage Service Class come un SCP) è illustrato nella figura 4.2-6:

1. L’utente seleziona una o più immagini per il trasferimento.
2. Per ciascuna immagine selezionata, lo Storage AE apre un’associazione con un Remote AE.
3. L’immagine selezionata da un utente viene trasmessa al Remote AE mediante richiesta di C-STORE e il Remote AE risponde con risposta di C-STORE (stato di riuscita).
5. Lo Storage AE elabora sequenzialmente l’immagine successiva seguendo i passaggi 2-4 di cui sopra fino al trasferimento di tutte le immagini.

4.2.1.3.1.2. Contesti di presentazione proposti

L’applicazione DICOM del Sistema ecografico Site~Rite® 8 è in grado di proporre qualsiasi contesto di presentazione mostrato nella tabella di seguito:

<table>
<thead>
<tr>
<th>Tabella 4.2-7</th>
<th>CONTESTO DI PRESENTAZIONE PROPOSTO PER ATTIVITÀ DI INVIO IMMAGINI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sintassi astratta</td>
<td>Sintassi di trasferimento</td>
</tr>
<tr>
<td>Nome</td>
<td>UID</td>
</tr>
<tr>
<td>Archiviazione immagine ecografica</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
</tr>
<tr>
<td>Archiviazione immagine di acquisizione secondaria</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabella 4.2-8</th>
<th>Sintassi di trasferimento proposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome Sintassi di trasferimento</td>
<td>UID Sintassi di trasferimento</td>
</tr>
<tr>
<td>VR implicito Little endian (predefinito DICOM)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>VR esplicito Little endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>VR esplicito Big endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabella 4.2-9</th>
<th>Compressione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome Sintassi di trasferimento</td>
<td>UID Sintassi di trasferimento</td>
</tr>
<tr>
<td>Perdita di dati JPEG</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>Senza perdita di dati JPEG</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

Nel processo di trasferimento di un’immagine, l’applicazione DICOM del Sistema ecografico Site~Rite® 8 include la stessa sintassi astratta (vale a dire la SOP Class dell’istanza d’immagine) in più contesti di presentazione. Ogni coppia di Sintassi astratta e Sintassi di trasferimento è unica e uno dei contesti di presentazione proposti contiene la sintassi di trasferimento predefinita DICOM (vale a dire, VR implicita Little Endian) per la sintassi astratta. Un contesto di presentazione con Verification SOP Class è sempre incluso in una richiesta Associata da parte dello Storage AE.
4.2.1.3.1.3. SOP Specific Conformance Image Storage SOP Classes

Tutte le Image Storage SOP Classes supportate dallo Storage AE, tranne ove indicato, mostrano lo stesso comportamento e sono descritte unitamente in questa sezione.

Sulla base della Storage SOP Class dell’istanza di immagine selezionata dall’utente, lo Storage AE propone una richiesta di associazione per il Remote AE con più contesti di presentazione, ciascuna contenente una sintassi di trasferimento diversa sostenuta dallo Storage AE. Se nessuno dei contesti di presentazione corrispondente alla Storage SOP Class dell’istanza di immagine selezionata in fase di elaborazione viene accettato, l’utente viene debitamente informato della condizione di non riuscito.

Se più contesti di presentazione vengono accettati dal Remote AE per la stessa Sintassi astratta, lo Storage AE, per impostazione predefinita, coglie il contesto di presentazione basato sull’immagine selezionata (vale a dire l’acquisizione secondaria o ecografica) prima del processo di C-STORE.

Il comportamento dello Storage AE quando incontra un codice di stato nella risposta di C-STORE è riassunto nella tabella di seguito:

Tabella 4.2-10
Comportamento gestione stato di risposta di C-STORE di archiviazione

<table>
<thead>
<tr>
<th>Servizio Stato</th>
<th>Ulteriore significato</th>
<th>Codice di errore</th>
<th>Comportamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riuscito</td>
<td>Riuscito</td>
<td>0000</td>
<td>Il SCP ha conservato correttamente l’istanza della SOP. Se tutte le istanze della SOP selezionate in una richiesta di trasferimento presentano lo stato di riuscito, il trasferimento viene quindi considerato riuscito e l’utente avvisato.</td>
</tr>
<tr>
<td>Avvertenza</td>
<td>Avvertenza</td>
<td>B000-BFFF</td>
<td>La trasmissione dell’immagine viene considerata riuscita.</td>
</tr>
<tr>
<td>*</td>
<td>Errore</td>
<td>Qualsiasi altro codice di stato</td>
<td>Il SPC non è riuscito a archiviare l’istanza.</td>
</tr>
</tbody>
</table>

Il comportamento dello Storage AE durante la comunicazione non riuscita è riassunto nella tabella di seguito:

Tabella 4.2-11
Comportamento di comunicazione di archiviazione non riuscita

<table>
<thead>
<tr>
<th>Eccezione</th>
<th>Comportamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pausa</td>
<td>L’associazione viene interrotta utilizzando A-INTERROMPI e il processo di trasferimento viene considerato come non riuscito. Il motivo viene segnalato al file di registro.</td>
</tr>
<tr>
<td>Associazione interrotta dal SCP o dal livello di rete</td>
<td>Il processo di trasferimento viene considerato come non riuscito. Il motivo viene segnalato all’utente mediante il file di registro.</td>
</tr>
</tbody>
</table>

Nota: è possibile salvare il file di registro su un dispositivo di archiviazione USB selezionando "shift+cntrl+L".
Attraverso l’intervento dell’utente è possibile riavviare un trasferimento non riuscito. L’applicazione non tenta automaticamente un nuovo invio dei file il cui trasferimento è non riuscito.

I contenuti delle istanze della SOP di archiviazione immagine diverse create dal DICOM del Sistema ecografico Site~Rite® 8 si conformano alla definizione dell’IOD dell’immagine PS 3.3 dello standard DICOM e sono descritti nella sezione 6.1.

4.3. PROFILI DELLE COMUNICAZIONI

L’applicazione DICOM del Sistema ecografico Site~Rite® 8 offre il supporto della Comunicazione di rete TCP/IP V3.0 DICOM come definito nella Parte 8 dello standard DICOM.

4.3.1. Stack TCP/IP

L’applicazione DICOM del Sistema ecografico Site~Rite® 8 eredita lo stack TCP/IP dal sistema informatico su cui viene eseguito.

4.3.1.1. Assistenza del supporto fisico

L’applicazione DICOM del Sistema ecografico Site~Rite® 8 è indifferente al supporto fisico su cui il TCP/IP viene eseguito; eredita il supporto dal sistema informatico su cui viene eseguito.

4.4. ESTENSIONI/SPECIALIZZAZIONI/PRIVATIZZAZIONI

Non applicabile.

4.5. CONFIGURAZIONE

4.5.1. Titolo/Presentazione Indirizzo Mappatura dell’AE

Non vengono forniti Titoli dell’AE predefiniti. È necessario configurare i Titoli del Local AE e del Remote AE come anche gli indirizzi host server remoto e i numeri delle porte. Il Titolo del Local AE configurato e le informazioni di connessione remota vengono archiviati nel sistema per un utilizzo successivo da parte dello Storage AE.

4.5.1.1. Titoli del Local AE

Esiste solo un Titolo del Local AE configurabile per lo Storage AE. L’utente può modificare questa configurazione.

4.5.1.2. Titoli del Remote AE

L’applicazione DICOM del Sistema ecografico Site~Rite® 8 consente una sola configurazione del Remote AE. Il Titolo del Remote AE, l’indirizzo host del server remoto (vale a dire l’indirizzo IP) e il numero della porta vanno configurati al momento dell’installazione. L’utente può modificare il Remote AE, l’indirizzo host e la configurazione del numero della porta in qualsiasi momento.

4.5.1.2.1. SCP remoto

La tabella di seguito descrive le opzioni di configurazione per il SCP remoto:
Tabella 4.5-1
Tabella dei parametri di configurazione del SCP remoto

<table>
<thead>
<tr>
<th>Impostazioni del SCP</th>
<th>Predefinito</th>
<th>Configurabile</th>
<th>Opzioni di configurazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titolo della Storage Application Entity</td>
<td>No</td>
<td>Sì</td>
<td>N/A</td>
</tr>
<tr>
<td>Titolo dell’Entità di applicazione remota</td>
<td>No</td>
<td>Sì</td>
<td>N/A</td>
</tr>
<tr>
<td>Indirizzo IP remoto</td>
<td>No</td>
<td>Sì</td>
<td>N/A</td>
</tr>
<tr>
<td>Porta TCP remota</td>
<td>No</td>
<td>Sì</td>
<td>N/A</td>
</tr>
<tr>
<td>Sintassi di trasferimento</td>
<td>No</td>
<td>Sì</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Compressione</td>
<td>No</td>
<td>Sì</td>
<td>Senza perdita di dati, Perdita di dati, Nessuna</td>
</tr>
</tbody>
</table>

4.6. SUPPORTO PER SET DI CARATTERI ESTESI

L’applicazione DICOM del Sistema ecografico Site-Rite® 8 supporta i seguenti set di caratteri:
- ISO-IR 6 (predefinito): set G0 di base
- ISO-IR 100: N. 1 Alfabeto latino

Inoltre, l’applicazione DICOM del Sistema ecografico Site-Rite® 8 supporta l’utilizzo del seguente Repertorio di carattere nella Rappresentazione del valore applicabile, come ad esempio il Nome del paziente, la Descrizione dello studio e la Descrizione della serie.
- ISO_IR 144 (ISO 8859-5:1988 set supplementare di alfabeto Latino/Cirillico)

5. INTERSCAMBIO SUPPORTO

L’applicazione DICOM del Sistema ecografico Site-Rite® 8 non supporta la archiviazione di supporti.

6. ALLEGATI

6.1. CONTENUTI IOD

6.1.1. Istanze delle SOP create

La tabella 6.1-1 specifica gli attributi di un’immagine di acquisizione secondaria ecografica trasmessa dallo Storage AE dell’applicazione DICOM del Sistema ecografico Site-Rite® 8.

Le tabelle di seguito utilizzano una serie di abbreviazioni. Le abbreviazioni utilizzate nella colonna “Presenza di ...” sono:

<table>
<thead>
<tr>
<th>VNAP</th>
<th>Valore non sempre presente (attributo inviato con lunghezza zero se nessun valore è presente)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAP</td>
<td>Attributo non sempre presente</td>
</tr>
<tr>
<td>SEMPRE</td>
<td>Presente sempre</td>
</tr>
<tr>
<td>VUOTO</td>
<td>Attributo inviato senza un valore</td>
</tr>
</tbody>
</table>

Le abbreviazioni utilizzate nella colonna “Fonte”:

<table>
<thead>
<tr>
<th>UTENTE</th>
<th>La fonte valore dell’attributo deriva dall’input dell’utente</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMATICO</td>
<td>Il valore dell’attributo viene generato automaticamente</td>
</tr>
<tr>
<td>CONFIG</td>
<td>La fonte del valore dell’attributo è un parametro configurabile</td>
</tr>
</tbody>
</table>
6.1.1.1. IOD dell’immagine di acquisizione secondaria

Tabella 6.1-1
IOD PER ISTANZE DELLA SOP DI ACQUISIZIONE SECONDARIA ED ECOGRAFICA
CREATE

<table>
<thead>
<tr>
<th>IE</th>
<th>Modulo</th>
<th>Riferimento</th>
<th>Presenza di modulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paziente</td>
<td>Nome del paziente</td>
<td>Tabella 6.1-2</td>
<td>SEMPRE</td>
</tr>
<tr>
<td>Studio</td>
<td>Studio generale</td>
<td>Tabella 6.1-3</td>
<td>SEMPRE</td>
</tr>
<tr>
<td>Serie</td>
<td>Serie generali</td>
<td>Tabella 6.1-4</td>
<td>SEMPRE</td>
</tr>
<tr>
<td>Apparecchiature</td>
<td>Apparecchiature SC</td>
<td>Tabella 6.1-5</td>
<td>SEMPRE</td>
</tr>
<tr>
<td>Immagine</td>
<td>Immagine generale</td>
<td>Tabella 6.1-6</td>
<td>SEMPRE</td>
</tr>
<tr>
<td></td>
<td>Pixel immagine</td>
<td>Tabella 6.1-7</td>
<td>SEMPRE</td>
</tr>
<tr>
<td></td>
<td>Immagine SC</td>
<td>Tabella 6.1-8</td>
<td>SEMPRE</td>
</tr>
<tr>
<td></td>
<td>Comune SOP</td>
<td>Tabella 6.1-9</td>
<td>SEMPRE</td>
</tr>
</tbody>
</table>

6.1.1.2. Modulo comune

Tabella 6.1-2
MODULO PAZIENTE DI Istanze DELLA SOP CREATE

<table>
<thead>
<tr>
<th>Nome attributo</th>
<th>Tag</th>
<th>VR</th>
<th>Valore</th>
<th>Presenza di valore</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome del paziente</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Input utente o file di script. Massimo 64 caratteri</td>
<td>SEMPRE</td>
<td>UTENTE</td>
</tr>
<tr>
<td>ID paziente</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Input utente o file di script. Massimo 64 caratteri</td>
<td>SEMPRE</td>
<td>UTENTE</td>
</tr>
<tr>
<td>Data di nascita del</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Vuoto sempre Lunghezza zero</td>
<td>VNAP</td>
<td>UTENTE</td>
</tr>
<tr>
<td>paziente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesso del paziente</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Input utente o file di script</td>
<td>SEMPRE</td>
<td>UTENTE</td>
</tr>
</tbody>
</table>

Tabella 6.1-3
MODULO DI STUDIO GENERALE DI Istanze DELLA SOP CREATE

<table>
<thead>
<tr>
<th>Nome attributo</th>
<th>Tag</th>
<th>VR</th>
<th>Valore</th>
<th>Presenza di valore</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID dell’istanza di</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>studio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data dello studio</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Vuoto sempre</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Tempo di studio</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Vuoto sempre</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Numero di registrazione</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Vuoto sempre</td>
<td>VNAP</td>
<td>AUTOMATICO</td>
</tr>
</tbody>
</table>

Tabella 6.1-4
MODULO DI SERIE GENERALE DI Istanze DELLA SOP CREATE

<table>
<thead>
<tr>
<th>Nome attributo</th>
<th>Tag</th>
<th>VR</th>
<th>Valore</th>
<th>Presenza di valore</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalità</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>UID di istanza di</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
</tbody>
</table>
6.1.1.3. Moduli di immagine di acquisizione secondaria

Tabella 6.1-5
MODULO DI APPARECCHIATURA SC DI Istanze DELLA SOP SC CREATE

<table>
<thead>
<tr>
<th>Nome attributo</th>
<th>Tag</th>
<th>VR</th>
<th>Valore</th>
<th>Presenza di valore</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalità</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Tipo di conversione</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
</tbody>
</table>

Tabella 6.1-6
MODULO DI IMMAGINE GENERALE DI Istanze DELLA SOP SC CREATE

<table>
<thead>
<tr>
<th>Nome attributo</th>
<th>Tag</th>
<th>VR</th>
<th>Valore</th>
<th>Presenza di valore</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di immagine</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Descrizione derivazione</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Compressione immagine con perdita di dati</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
</tbody>
</table>

Tabella 6.1-7
MODULO DI PIXEL DI IMMAGINE DI Istanze DELLA SOP SC CREATE

<table>
<thead>
<tr>
<th>Nome attributo</th>
<th>Tag</th>
<th>VR</th>
<th>Valore</th>
<th>Presenza di valore</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dati pixel</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>File di immagini selezionate dall'utente (vale a dire JPEG)</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Campioni per pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Interpretazione fotometrica</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Configurazione planare</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Righe</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Colonne</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Bit assegnati</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Bit archiviati</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Bit elevato</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Rappresentazione pixel</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
</tbody>
</table>
Tabella 6.1-8
MODULO DI IMMAGINE SC DI Istanze della SOP SC CREATE

<table>
<thead>
<tr>
<th>Nome attributo</th>
<th>Tag</th>
<th>VR</th>
<th>Valore</th>
<th>Presenza di valore</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data di acquisizione secondaria</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Data di creazione del file immagine (vale a dire JPEG)</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Tempo di acquisizione secondaria</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Tempo di creazione del file immagine (vale a dire JPEG)</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
</tbody>
</table>

Tabella 6.1-9
MODULO COMUNE SOP DI Istanze della SOP SC CREATE

<table>
<thead>
<tr>
<th>Nome attributo</th>
<th>Tag</th>
<th>VR</th>
<th>Valore</th>
<th>Presenza di valore</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set di caratteri specifico</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>"IOS_IR 100" o ISO_IR_144"</td>
<td>ANAP</td>
<td>CONFIG</td>
</tr>
<tr>
<td>SOP Class UID</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>"1.2.840.10008.5.1.4.1.1.7"</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>UID di classe SOP</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
<tr>
<td>Designatore dello schema di codifica</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Generato dal DICOM del Sistema ecografico Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTOMATICO</td>
</tr>
</tbody>
</table>

© 2015 C. R. Bard, Inc. Tutti i diritti riservati.
Declaración de conformidad de DICOM para la aplicación DICOM del sistema ecográfico Site~Rite® 8

Nombre de la empresa: BARD Access Systems, Inc.

Nombre del producto: Aplicación DICOM del sistema ecográfico Site~Rite® 8

Versión: 1.0-rev. A-1

Número de documento interno: 1190674

Fecha: 20 de abril de 2015
1. INFORMACIÓN GENERAL DE LA DECLARACIÓN DE CONFORMIDAD

La función DICOM del sistema ecográfico Site-Rite® 8 acepta imágenes de trama JPEG estándar del dispositivo ecográfico y genera instancias de DICOM de imágenes ecográficas e instancias de DICOM de captura secundaria para admitir imágenes de onda de ECG basadas en la información del paciente seleccionada. Además, permite al usuario introducir manualmente información sobre pacientes/estudios. También implementa los servicios de DICOM necesarios para transferir imágenes a un archivo PACS.

En la Tabla 1-1 se ofrece información general sobre los servicios de red prestados por la aplicación DICOM del sistema ecográfico Site-Rite® 8.

<table>
<thead>
<tr>
<th>Tabla 1-1</th>
<th>Servicio de red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clases de SOP</td>
<td>Usuario del servicio (SCU)</td>
</tr>
<tr>
<td>Transferencia</td>
<td></td>
</tr>
<tr>
<td>Imagen ecográfica</td>
<td>Sí</td>
</tr>
<tr>
<td>Imagen de captura secundaria</td>
<td>Sí</td>
</tr>
</tbody>
</table>
2. ÍNDICE

1. INFORMACIÓN GENERAL DE LA DECLARACIÓN DE CONFORMIDAD 2
2. ÍNDICE .. 3
3. INTRODUCCIÓN... 4
 3.1. HISTORIAL DE LA REVISIÓN ... 4
 3.2. DESTINATARIOS ... 4
 3.3. OBSERVACIONES .. 4
 3.4. TÉRMINOS Y DEFINICIONES ... 4
 3.5. FUNDAMENTOS DE LA COMUNICACIÓN DICOM ... 6
 3.6. ABBREVIATURAS .. 7
 3.7. REFERENCIAS ... 8
4. CONEXIÓN EN RED ... 8
 4.1. MODELO DE IMPLEMENTACIÓN ... 8
 4.1.1. Flujo de datos de la aplicación ... 8
 4.1.2. Definición funcional de las EA ... 9
 4.1.2.1. Definición funcional de entidad de aplicación de almacenamiento 9
 4.1.2.2. Secuenciación de actividades del mundo real ... 9
 4.1.2.3. Información sobre la identificación de la implementación 10
 4.1.2.4. Política de iniciación de la asociación ... 10
 4.1.3. Actividad – Envío de imágenes .. 11
 4.1.3.1. Descripción y secuencia de las actividades .. 11
 4.1.3.2. Contextos de presentación propuestos ... 12
 4.1.3.3. Clases SOP de almacenamiento de imágenes de cumplimiento específicas de SOP 13
 4.2. PERFIL DE LAS COMUNICACIONES .. 14
 4.3.1. Pila TCP/IP ... 14
 4.4. AMPLIACIONES/ESPECIALIZACIONES/PRIVATIZACIONES 14
 4.5. CONFIGURACIÓN .. 14
 4.5.1. Asignación de título de EA/dirección de presentación 14
 4.5.1.1. Títulos de EA del servidor .. 15
 4.5.1.2. Títulos de EA remota ... 15
 4.5.1.2.1. SCP remoto .. 15
 4.6. COMPATIBILIDAD PARA CONJUNTOS DE CARACTERES AMPLIADOS 15
5. INTERCAMBIO DE MEDIOS ... 15
6. APÉNDICES .. 16
 6.1. CONTENIDO DE IOD ... 16
 6.1.1. Instancia(s) de SOP creadas .. 16
 6.1.1.1. IOD de la imagen de captura secundaria ... 16
 6.1.1.2. Módulo común ... 17
 6.1.1.3. Módulos de la imagen de captura secundaria .. 17

Declaración de conformidad de DICOM para la aplicación DICOM
del sistema ecográfico Site-Rite® 8
3. INTRODUCCIÓN

3.1. HISTORIAL DE LA REVISIÓN

<table>
<thead>
<tr>
<th>Versión del documento</th>
<th>Fecha de publicación</th>
<th>Autor</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 de marzo de 2015</td>
<td>Tyler Durfee</td>
<td>Versión inicial</td>
</tr>
</tbody>
</table>

3.2. DESTINATARIOS

Este documento se ha redactado para personas que necesiten saber cómo se integra la aplicación DICOM del sistema ecográfico Site~Rite® 8 en su centro de asistencia sanitaria. Entre estas personas se incluyen tanto a los responsables de la política y la arquitectura de la red de imágenes global como a los integradores que necesiten conocer detalladamente las funciones de DICOM del producto. Este documento contiene definiciones básicas de DICOM para que cualquier lector entienda cómo implementa este producto las funciones de DICOM. No obstante, se espera que los integradores entiendan perfectamente toda la terminología de DICOM, la relación entre las tablas de este documento y la funcionalidad del producto y cómo se integra dicha funcionalidad con otros dispositivos que admitan funciones de DICOM compatibles.

3.3. OBSERVACIONES

El ámbito de esta declaración de conformidad de DICOM es facilitar la integración entre la aplicación DICOM del sistema ecográfico Site~Rite® 8 y otros productos DICOM. La declaración de conformidad se debe leer y entender junto con el estándar DICOM. DICOM no garantiza la interoperabilidad por sí misma. No obstante, la declaración de conformidad facilita una comparación de primer nivel para la interoperabilidad entre diferentes aplicaciones que admitan la funcionalidad de DICOM compatible.

Esta declaración de conformidad no pretende sustituir la validación con otro equipo de DICOM para garantizar un intercambio adecuado de la información indicada. De hecho, el usuario debe estar al tanto de los siguientes asuntos importantes:

— La comparación de las diferentes declaraciones de conformidad es solo el primer paso para evaluar la interconectividad e interoperabilidad entre el producto y otro equipo compatible con DICOM.
— Se deben definir y ejecutar procedimientos de prueba para validar el nivel necesario de interoperabilidad con equipos de DICOM compatibles específicos, según lo determine el centro de asistencia sanitaria.

3.4. TÉRMINOS Y DEFINICIONES

Se proporcionan definiciones informales para los siguientes términos, que se usan en esta declaración de conformidad. El estándar DICOM es la fuente autorizada para las definiciones formales de estos términos.

Asociación: canal de comunicación de red configurado entre entidades de aplicación.

Atributo: unidad de información de la definición de un objeto; elemento de datos identificado mediante una etiqueta. La información puede ser una estructura de datos compleja (secuencia) compuesta por elementos de datos de nivel inferior. Ejemplos: ID de paciente (0010,0020), número de acceso (0008,0050).
Clase Par servicio/objeto (SOP, Service/Object Pair): especificación de la transferencia de red o medios (servicio) de un tipo determinado de datos (objeto); es la unidad fundamental de la especificación de interoperabilidad de DICOM. Ejemplos: Servicio de almacenamiento de imágenes ecográficas, sintaxis de compresión, sintaxis de transferencia o información sobre el paciente.

Contexto de la aplicación: especificación del tipo de comunicación que se usa entre entidades de aplicación. Ejemplo: protocolo de red de DICOM.

Contexto de presentación: conjunto de servicios de red de DICOM que se usa en una asociación, según se negocie entre las entidades de aplicación; incluye sintaxis abstractas y sintaxis de transferencia.

Definición de objeto de información (IOD, Information Object Definition): conjunto especificado de atributos que comprenden un tipo de objeto de datos; no representa una instancia específica del objeto de datos, sino más bien una clase de objetos de datos similares con las mismas propiedades. Los atributos se pueden especificar como Obligatorio (tipo 1), Necesario pero posiblemente desconocido (tipo 2) u Opcional (tipo 3), y puede haber condiciones asociadas al uso de un atributo (tipos 1C y 2C). Ejemplos: IOD de imagen de RM, IOD de imagen de TC, IOD de trabajo de impresión.

Entidad de aplicación (EA): punto de un intercambio de información de DICOM, incluyendo la red de DICOM o el software de interfaz multimedia; es decir, el software que envía o recibe objetos o mensajes de información de DICOM. Un único dispositivo puede tener varias entidades de aplicación.

Etiqueta: identificador de 32 bits de un elemento de datos representado como un par de números hexadecimales de cuatro dígitos, el “grupo” y el “elemento”. Si el número de “grupo” es impar, la etiqueta está destinada a un elemento de datos privado (específico del fabricante). Ejemplos: (0010,0020) [ID de paciente], (07FE,0010) [datos de píxeles], (0019,0210) [elemento de datos privado].

Grupo de Expertos Fotográficos Unidos (JPEG, Joint Photographic Experts Group): conjunto de técnicas de compresión de imágenes estandarizadas que está disponible para su uso por aplicaciones DICOM.

Identificador único (UID, Unique Identifier): cadena "con punto decimal" única global que identifica un objeto o una clase de objetos específicos; es un identificador de objeto ISO-8824. Ejemplos: UID de instancia de estudio, UID de clase SOP, UID de instancia SOP.

Instancia de Par servicio/objeto (SOP): objeto de información; aparición específica de información intercambiada en una clase SOP. Ejemplos: imagen ecográfica específica.

Módulo: conjunto de atributos dentro de una definición de objeto de información que están lógicamente relacionados entre sí. Ejemplo: El módulo de paciente incluye el nombre del paciente, el ID de paciente, la fecha de nacimiento del paciente y el sexo del paciente.

Negociación: primera fase del establecimiento de asociación que permite que las entidades de aplicación acepten los tipos de datos que se van a intercambiar y cómo se van a codificar esos datos.

Perfiles de aplicación de medios: especificación de objetos y codificación de información de DICOM en medios extraíbles (p. ej., CD).
Perfil de seguridad: conjunto de mecanismos, como cifrado, autenticación de usuario o firmas digitales, que usa una entidad de aplicación para garantizar la confidencialidad, integridad y/o disponibilidad de los datos de DICOM intercambiados.

Proveedor de clase de servicio (SCP, Service Class Provider): función de una entidad de aplicación que presta un servicio de red de DICOM; normalmente, se trata de un servidor que realiza operaciones solicitadas por otra entidad de aplicación (usuario de clase de servicio). Ejemplos: Sistema de archivado y comunicación de imágenes (SCP de almacenamiento de imágenes y SCP de consulta/recuperación de imágenes), sistema de información de radiología (SCP de lista de trabajo de modalidad).

Representación de valores (VR, Value Representation): tipo de formato de un elemento de datos individual de DICOM, como texto, número entero, nombre de una persona o código. Los objetos de información de DICOM se pueden transmitir con una identificación explícita del tipo de cada elemento de datos (VR explícita), o bien sin identificación explícita (VR implícita); con la VR implícita, la aplicación receptora debe usar un diccionario de datos DICOM para buscar el formato de cada elemento de datos.

Sintaxis abstracta: información que se acepta intercambiar entre aplicaciones, generalmente equivalentes a una clase de tipo Par servicio/objeto (SOP, Service/Object Pair). Ejemplos: Clase SOP de verificación, clase SOP de modelo de información de lista de trabajo de modalidad (Find), clase SOP de almacenamiento de imágenes de radiografías computerizadas.

Sintaxis de transferencia: codificación utilizada para intercambiar objetos y mensajes de información de DICOM. Ejemplos: JPEG comprimido (imágenes), representación de valor explícito Little Endian.

Título de la entidad de aplicación: nombre conocido externamente de una entidad de aplicación que sirve para identificar una aplicación DICOM con otras aplicaciones DICOM de la red.

Unidad de datos de protocolo (UDP): paquete (porción) de un mensaje de DICOM enviado a través de la red. Los dispositivos deben especificar el tamaño máximo de paquete que pueden recibir para mensajes de DICOM.

Usuario de clase de servicio (SCU, Service Class User): función de una entidad de aplicación que usa un servicio de red de DICOM; normalmente, se trata de un cliente. Ejemplos: modalidad de creación de imágenes (SCU de almacenamiento de imágenes y SCU de lista de trabajo de modalidad), estación de trabajo de creación de imágenes (SCU de consulta/recuperación de imágenes).

3.5. FUNDAMENTOS DE LA COMUNICACIÓN DICOM

En esta sección se describe la terminología usada en esta declaración de conformidad para los usuarios no especializados. Los términos clave usados en la declaración de conformidad se resaltan en cursiva a continuación. Esta sección no sustituye la formación sobre DICOM y simplifica bastante los significados de los términos de DICOM.

Dos entidades de aplicación (dispositivos) que deseen comunicarse entre sí a través de una red mediante el protocolo DICOM deben acordar primero varios asuntos durante un “protocolo de enlace” de red inicial. Uno de los dos dispositivos debe iniciar una asociación (una conexión con el otro dispositivo) y preguntar si el otro dispositivo puede admitir servicios, información y codificación específicos (negociación).
DICOM especifica varios servicios de red y tipos de objetos de información; todos ellos se denominan *sintaxis abstracta* para la negociación. DICOM especifica también varios métodos de codificación de datos, que indican una *sintaxis de transferencia*. La negociación permite que la entidad de aplicación inicial proponga combinaciones de sintaxis abstracta y sintaxis de transferencia para que se usen en la asociación; estas combinaciones se denominan *contextos de presentación*. La entidad de aplicación receptora acepta los contextos de presentación compatibles.

Para cada contexto de presentación, la negociación de la asociación permite también que los dispositivos acuerden las funciones: el *usuario de clase de servicio* (SCU – cliente) y el *proveedor de clase de servicio* (SCP – servidor). Normalmente, el dispositivo que inicia la conexión es el SCU; es decir, el sistema cliente llama al servidor, pero no siempre.

Por último, la negociación de la asociación permite el intercambio de un paquete de red de tamaño máximo (*UPD*), información de *seguridad* y opciones de servicio de red (que se denomina información sobre *negociación ampliada*).

Las entidades de aplicación, después de haber negociado los parámetros de asociación, pueden empezar ahora a intercambiar datos. Entre los intercambios de datos comunes se incluyen las consultas de listas de trabajo y listas de imágenes almacenadas, la transferencia de objetos de imagen y análisis (informes estructurados) y el envío de imágenes a impresoras de película. El remitente aplica un formato a cada unidad de datos intercambiable de acuerdo con la *definición de objeto de información* adecuada y se envía mediante la sintaxis de transferencia negociada. Hay una sintaxis de transferencia predeterminada que deben aceptar todos los sistemas, pero es posible que no sea la más eficaz para usar en algunos casos. El receptor reconoce explícitamente cada transferencia con un *estado de respuesta* indicador de éxito, fallo, o de que hay operaciones de consulta o recuperación aún en curso.

Dos entidades de aplicación deben también comunicarse entre sí mediante el intercambio de medios (como un CD-R). Como no hay una negociación de asociación posible, ambas usan un *perfil de aplicación de medios* que especifica un formato de medio de intercambio, una sintaxis abstracta y una sintaxis de transferencia “pre-negociados”.

3.6. ABREVIATURAS

En este documento se usan los siguientes acrónimos y abreviaturas:

<table>
<thead>
<tr>
<th>Acrónimo</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>EA</td>
<td>Entidad de aplicación</td>
</tr>
<tr>
<td>UPD</td>
<td>Unidad de datos de protocolo</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User</td>
</tr>
<tr>
<td>SOP</td>
<td>Service-Object Pair</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>UID</td>
<td>Unique Identifier</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian Explicit</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian Explicit</td>
</tr>
</tbody>
</table>

Declaración de conformidad de DICOM para la aplicación DICOM del sistema ecográfico Site-Rite®
3.7. REFERENCIAS

<table>
<thead>
<tr>
<th>DICOM PS3.4</th>
<th>DICOM PS3.4: especificaciones de clase de servicio, disponibles totalmente gratis en http://medical.nema.org/</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td>Acrónimo de un tipo de compresión de imagen creado a partir del nombre de sus creadores: Joint Photographic Experts Group (Grupo de Expertos Fotográficos Unidos). Se conoce ahora como ISO/IEC IS 10918-1</td>
</tr>
</tbody>
</table>

4. CONEXIÓN EN RED

4.1. MODELO DE IMPLEMENTACIÓN

4.1.1. Flujo de datos de la aplicación

La entidad de aplicación de almacenamiento de la aplicación DICOM del sistema ecográfico Site-Rite® envía imágenes a una EA remota. Se asocia a una actividad local del mundo real de “envío de imágenes”. El “envío de imágenes” se lleva a cabo cuando lo solicita el usuario para cada estudio realizado o para determinadas imágenes seleccionadas. Si lo activa un usuario a través de la interfaz de usuario proporcionada en la aplicación DICOM del sistema ecográfico Site-Rite® 8, cada conjunto marcado de imágenes se puede almacenar inmediatamente en un destino preconfigurado.

Figura 4.1-1
Diagrama del flujo de datos de la aplicación

La entidad de aplicación de almacenamiento de la aplicación DICOM del sistema ecográfico Site-Rite® 8 envía imágenes a una EA remota. Se asocia a una actividad local del mundo real de “envío de imágenes”. El “envío de imágenes” se lleva a cabo cuando lo solicita el usuario para cada estudio realizado o para determinadas imágenes seleccionadas. Si lo activa un usuario a través de la interfaz de usuario proporcionada en la aplicación DICOM del sistema ecográfico Site-Rite® 8, cada conjunto marcado de imágenes se puede almacenar inmediatamente en un destino preconfigurado.
4.1.2. **Definición funcional de las EA**

4.1.2.1. **Definición funcional de entidad de aplicación de almacenamiento**

El usuario selecciona un conjunto de imágenes almacenadas localmente en la aplicación DICOM del sistema ecográfico Site-Rite® y selecciona el botón de transferencia (envío) de DICOM para activar la EA de almacenamiento. Se envía una solicitud asociada a la EA de destino preconfigurada y, cuando se negocié correctamente un contexto de presentación, se inicia la transferencia de imágenes. Si no se puede establecer la asociación, se notifica el error inmediatamente al usuario y se registran los detalles. De forma predeterminada, la EA de almacenamiento no intentará iniciar otra asociación en caso de que se produzca una situación de error.

4.1.2.2. **Secuenciación de actividades del mundo real**

![Secuencia de actividades del mundo real](image)

Figura 4.1-2

LIMITACIONES DE LA SECUENCIACIÓN

En una situación normal de flujo de trabajo, las limitaciones de secuenciación ilustradas en la Figura 4.1-2 aplican:

1. Entradas o actualizaciones de usuario e información sobre el estudio cuando corresponda.
2. El usuario captura una imagen durante el estudio.
3. El usuario selecciona imágenes del almacenamiento local a través de la interfaz del usuario para transmitirlas a la EA remota y selecciona el botón “DICOM transfer” dentro de la interfaz de usuario de la aplicación.
4. La aplicación lee la información sobre el paciente introducida por el usuario para el estudio, genera instancias de DICOM y envía instancias de DICOM seleccionadas a una EA remota.
4.2. ESPECIFICACIONES SOBRE LA EA

4.2.1. Especificación sobre la entidad de aplicación de almacenamiento

4.2.1.1. Clases de SOP

La aplicación DICOM del sistema ecográfico Site~Rite® 8 proporciona una conformidad estándar a las siguientes clases de SOP:

<table>
<thead>
<tr>
<th>Nombre de clase de SOP</th>
<th>UID de clase de SOP</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacenamiento de la imagen ecográfica</td>
<td>1.2.840.10008.5.1.1.6.1</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>Almacenamiento de la imagen de captura secundaria</td>
<td>1.2.840.10008.5.1.1.7.7</td>
<td>Sí</td>
<td>No</td>
</tr>
</tbody>
</table>

4.2.1.2. Políticas de asociación

4.2.1.2.1. Generales

Siempre se propone el nombre del contexto de la aplicación del estándar DICOM para DICOM 3.0:

<table>
<thead>
<tr>
<th>Nombre del contexto de la aplicación DICOM para almacenamiento de EA</th>
<th>1.2.840.10008.3.1.1.1</th>
</tr>
</thead>
</table>

4.2.1.2.2. Número de asociaciones

La aplicación DICOM del sistema ecográfico Site~Rite® 8 inicia una asociación a la vez para cada destino para el que se esté procesando una solicitud de transferencia activada por el usuario. Solo se activará una tarea de transferencia a la vez; las demás seguirán estando pendientes hasta que la solicitud de transferencia activa se lleve a cabo o falle.

<table>
<thead>
<tr>
<th>Número máximo de asociaciones simultáneas</th>
<th>1</th>
</tr>
</thead>
</table>

4.2.1.2.3. Naturaleza asíncrona

La aplicación DICOM del sistema ecográfico Site~Rite® 8 no admite una comunicación asíncrona (es decir, varias transacciones pendientes en una sola asociación).

<table>
<thead>
<tr>
<th>Número máximo de transacciones asíncronas pendientes</th>
<th>1</th>
</tr>
</thead>
</table>
4.2.1.2.4. Información sobre la identificación de la implementación

Esta es la información sobre la implementación para esta entidad de aplicación:

<table>
<thead>
<tr>
<th>Tabla 4.2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase de implementación de DICOM</td>
</tr>
<tr>
<td>UID de clase de implementación</td>
</tr>
</tbody>
</table>

4.2.1.3. Política de iniciación de la asociación

4.2.1.3.1. Actividad – Envío de imágenes

4.2.1.3.1.1. Descripción y secuencia de las actividades

Un usuario puede seleccionar imágenes y solicitar que se envíen a un destino preconfigurado de la interfaz de usuario de la aplicación. Cada solicitud se lleva a cabo inmediatamente al seleccionar el botón de envío y se notifica al usuario el estado de la transferencia.

Si el usuario activa una transferencia de DICOM, la EA de almacenamiento de la aplicación DICOM del sistema ecográfico Site-Rite® 8 intenta establecer una asociación con el servidor de destino preconfigurado e inicia una solicitud C-STORE para almacenar las imágenes seleccionadas. Cuando este proceso establezca correctamente una asociación a una entidad de aplicación remota, transferirá cada instancia seleccionada, una tras otra, mediante la asociación abierta. Se vuelve a notificar al usuario el estado de la transferencia a través de la interfaz de usuario. Si la respuesta de C-STORE de la aplicación remota contiene un estado distinto a Correcto o Advertencia, se cancela la asociación y se notifica al usuario el estado de fallo. El usuario puede reiniciar el proceso de transferencia en cualquier momento.

La EA de almacenamiento intenta iniciar una nueva asociación para poder ejecutar una solicitud C-STORE. Si la selección del usuario contiene varias imágenes, se negocia una asociación independiente para cada imagen en orden secuencial.

![Diagrama de flujo](image-url)
La posible secuenciación de la interacción entre la EA de almacenamiento y una EA remota (archivo PACS o administrador de imágenes que admita la clase de servicio de almacenamiento como un SCP) se ilustra en la Figura 4.2-6:

1. El usuario selecciona una o más imágenes para transferirlas.
2. Para cada imagen seleccionada, la EA de almacenamiento abre una asociación con la EA remota.
3. Una imagen seleccionada por el usuario se transmite a una EA remota mediante la solicitud C-STORE y la EA remota proporciona una respuesta C-STORE (estado correcto).
4. La EA de almacenamiento cierra la asociación.
5. La EA de almacenamiento procesa de manera secuencial la imagen siguiente siguiendo los pasos 2 a 4 anteriores hasta que se transfieran todas las imágenes.

4.2.1.3.1.2. Contextos de presentación propuestos

La aplicación DICOM del sistema ecográfico Site-Rite® 8 tiene capacidad para proponer cualquier contexto de presentación incluido en la tabla siguiente:

<table>
<thead>
<tr>
<th>Tabla 4.2-7</th>
<th>CONTEXTO DE PRESENTACIÓN PROPUESTO PARA LA ACTIVIDAD DE ENVÍO DE IMÁGENES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla de contextos de presentación</td>
<td></td>
</tr>
<tr>
<td>Nombre</td>
<td>UID</td>
</tr>
<tr>
<td>Almacenamiento de la imagen ecográfica</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
</tr>
<tr>
<td>Almacenamiento de la imagen de captura secundaria</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 4.2-8</th>
<th>Sintaxis de transferencia propuesta</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de sintaxis de transferencia</td>
<td>UID de sintaxis de transferencia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR implícita Little Endian (valor predeterminado de DICOM)</td>
<td>1.2.840.10008.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR explícita Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR explícita Big Endian</td>
<td>1.2.840.10008.1.2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 4.2-9</th>
<th>Compresión</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de sintaxis de transferencia</td>
<td>UID de sintaxis de transferencia</td>
<td></td>
</tr>
<tr>
<td>JPEG con pérdida</td>
<td>1.2.840.10008.1.2.4.81</td>
<td></td>
</tr>
<tr>
<td>JPEG sin pérdida</td>
<td>1.2.840.10008.1.2.4.70</td>
<td></td>
</tr>
</tbody>
</table>
En el proceso de transferencia de una imagen, la aplicación DICOM del sistema ecográfico Site-Rite® 8 incluirá la misma sintaxis abstracta (es decir, clase de SOP de la instancia de imagen) en varios contextos de presentación. Cada par de sintaxis abstracta y sintaxis de transferencia es único y uno de los contextos de presentación propuestos incluirá la sintaxis de transferencia predeterminada de DICOM (es decir, VR implícita Little Endian) por sintaxis abstracta. Siempre se incluye un contexto de presentación con una clase SOP de verificación en una solicitud de asociación de la EA de almacenamiento.

4.2.1.3.1.3. Clases SOP de almacenamiento de imágenes de cumplimiento específicas de SOP

Todas las clases SOP de almacenamiento de imágenes compatibles con la EA de almacenamiento demuestran el mismo comportamiento, a excepción de cuando se indique, y se describen todas en esta sección.

En función de la clase SOP de almacenamiento de la instancia de imagen seleccionada por el usuario, la EA de almacenamiento propone una solicitud de asociación a la EA remota con varios contextos de presentación, y cada uno incluye una sintaxis de transferencia diferente compatible con la EA de almacenamiento. Si no se acepta ninguno de los contextos de presentación que coinciden con la clase SOP de almacenamiento de la instancia de imagen seleccionada que se esté procesando, se notifica adecuadamente al usuario la situación de fallo.

Si la EA remota acepta varios contextos de presentación para la misma sintaxis abstracta, la EA de almacenamiento, de manera predeterminada, elige el contexto de presentación en función de la imagen seleccionada (es decir, ecografía o captura secundaria) antes del proceso C_STORE.

El comportamiento de EA de almacenamiento al encontrar un código de estado en la respuesta de C-STORE se resume en la tabla siguiente:

| Comportamiento del manejo del estado de la respuesta de C-STORE de almacenamiento |
|---|---|---|---|---|
| Servicio Estado | Significado adicional | Código de error | Comportamiento |
| Correcto | Correcto | 0000 | El SCP ha almacenado correctamente la instancia de SOP. Si todas las instancias de SOP seleccionadas en una solicitud de transferencia tienen el estado de correcta, la transferencia se considera correcta y se notifica el usuario. |
| Advertencia | Advertencia | B000-BFFF | La transferencia de imágenes se considera correcta. |
| * Error | Cualquier otro código de estado | | El SCP no ha podido almacenar la instancia. |
El comportamiento de la EA de almacenamiento durante el fallo de comunicación se resume en la tabla siguiente:

<table>
<thead>
<tr>
<th>Excepción</th>
<th>Comportamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de espera agotado</td>
<td>Se cancela la asociación mediante ABORT y la tarea de transferencia se considera fallida. Se notifica el motivo en el archivo de registro.</td>
</tr>
<tr>
<td>El SCP o la capa de red cancela la asociación</td>
<td>La tarea de transferencia se considera fallida. Se notifica el motivo al usuario a través del archivo de registro.</td>
</tr>
</tbody>
</table>

Nota: Se puede guardar el archivo de registro en un dispositivo de almacenamiento USB seleccionado "Mayús + Ctrl + L".

Una transferencia fallida se puede reiniciar por interacción del usuario. La aplicación no intenta volver a enviar automáticamente los archivos que no se han podido transferir.

El contenido de las diferentes instancias de SOP de almacenamiento de imágenes creadas por la aplicación DICOM del sistema ecográfico Site-Rite® 8 cumple la definición de IOD de imagen PS 3.3 del estándar DICOM y se describe en la Sección 6.1.

4.3. PERFILES DE LAS COMUNICACIONES
La aplicación DICOM del sistema ecográfico Site-Rite® 8 proporciona compatibilidad con la comunicación de red TCP/IP DICOM V3.0, según se define en la Parte 8 del estándar DICOM.

4.3.1. Pila TCP/IP
La aplicación DICOM del sistema ecográfico Site-Rite® 8 hereda su pila TCP/IP del sistema informático en el que se ejecuta.

4.3.1.1. Compatibilidad con medios físicos
La aplicación DICOM del sistema ecográfico Site-Rite® 8 se mantiene igual independientemente del medio físico en el que se ejecute el TCP/IP; hereda el medio del sistema informático en el que se ejecuta.

4.4. AMPLIACIONES/ESPECIALIZACIONES/PRIVATIZACIONES
No aplicable.

4.5. CONFIGURACIÓN

4.5.1. Asignación de título de EA/dirección de presentación
No se proporcionan títulos de EA predeterminados. Deben configurarse los títulos de la EA local y remota, además de las direcciones de host y los números de puerto del servidor remoto. El título de la EA local configurado y la información sobre la conexión remota se almacenan en el sistema para que los utilice más adelante la EA de almacenamiento.
4.5.1.1. **Títulos de EA del servidor**
Solo se puede configurar un título de EA local para la EA de almacenamiento. El usuario puede modificar esta configuración.

4.5.1.2. **Títulos de EA remota**
La aplicación DICOM del sistema ecográfico Site~Rite® 8 solo permite configurar una EA remota. El título de la EA remota, la dirección de host del servidor remoto (es decir, la dirección IP) y el número de puerto se deben configurar en el momento de la instalación. El usuario puede modificar la configuración de la EA remota, la dirección de host y el número de puerto en cualquier momento.

4.5.1.2.1. **SCP remoto**
En la tabla siguiente se describen las opciones de configuración del SCP remoto:

<table>
<thead>
<tr>
<th>Configuración de SCP</th>
<th>Predeterminado</th>
<th>Configurable</th>
<th>Opciones de configuración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Título de la entidad de aplicación de almacenamiento</td>
<td>No</td>
<td>Sí</td>
<td>N/D</td>
</tr>
<tr>
<td>Título de la entidad de aplicación remota</td>
<td>No</td>
<td>Sí</td>
<td>N/D</td>
</tr>
<tr>
<td>Dirección IP remota</td>
<td>No</td>
<td>Sí</td>
<td>N/D</td>
</tr>
<tr>
<td>Puerto TCP remoto</td>
<td>No</td>
<td>Sí</td>
<td>N/D</td>
</tr>
<tr>
<td>Sintaxis de transferencia</td>
<td>No</td>
<td>Sí</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Compresión</td>
<td>No</td>
<td>Sí</td>
<td>Sin pérdida, con pérdida, ninguna</td>
</tr>
</tbody>
</table>

4.6. **COMPATIBILIDAD PARA CONJUNTOS DE CARACTERES AMPLIADOS**
La aplicación DICOM del sistema ecográfico Site~Rite® 8 admite los siguientes conjuntos de caracteres:
- ISO-IR 6 (predeterminado): conjunto G0 básico
- ISO-IR 100: alfabeto latino n.º 1
Además, la aplicación DICOM del sistema ecográfico Site~Rite® 8 admite el uso del siguiente repertorio de caracteres en las representaciones de valores aplicables, como el nombre de paciente, la descripción del estudio y la descripción de la serie.
- ISO_IR 144 (conjunto de alfabeto complementario latino/cirílico ISO 8859-5:1988)

5. **INTERCAMBIO DE MEDIOS**
La aplicación DICOM del sistema ecográfico Site~Rite® 8 no admite el almacenamiento en medios.
6. APÉNDICES

6.1. CONTENIDO DE IOD

6.1.1. Instancia(s) de SOP creadas

En la Tabla 6.1-1 se especifican los atributos de una imagen ecográfica de captura secundaria transmitida por la EA de almacenamiento de la aplicación DICOM del sistema ecográfico Site-Rite® 8.

En las tablas siguientes se usan varias abreviaturas. Las abreviaturas usadas en la columna “Presencia de…” son las siguientes:

- **VNSP**: Valor no siempre presente (el atributo ha enviado una longitud cero si no había un valor presente)
- **ANSP**: Atributo no siempre presente
- **SIEMPRE**: Siempre presente
- **VACÍO**: Se ha enviado el atributo sin ningún valor

La abreviatura usada en la columna “Origen” son las siguientes:

- **USUARIO**: El origen del valor del atributo es una entrada del usuario
- **AUTO**: El valor del atributo se genera automáticamente
- **CONFIG**: El origen del valor del atributo es un parámetro configurable

6.1.1.1. IOD de la imagen de captura secundaria

Tabla 6.1-1

<table>
<thead>
<tr>
<th>IE</th>
<th>Módulo</th>
<th>Referencia</th>
<th>Presencia de módulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paciente</td>
<td>Nombre del paciente</td>
<td>Tabla 6.1-2</td>
<td>SIEMPRE</td>
</tr>
<tr>
<td>Estudio</td>
<td>Estudio general</td>
<td>Tabla 6.1-3</td>
<td>SIEMPRE</td>
</tr>
<tr>
<td>Serie</td>
<td>Serie general</td>
<td>Tabla 6.1-4</td>
<td>SIEMPRE</td>
</tr>
<tr>
<td>Equipo</td>
<td>Equipo de SC</td>
<td>Tabla 6.1-5</td>
<td>SIEMPRE</td>
</tr>
<tr>
<td>Imagen</td>
<td>Imagen general</td>
<td>Tabla 6.1-6</td>
<td>SIEMPRE</td>
</tr>
<tr>
<td></td>
<td>Pixel de imagen</td>
<td>Tabla 6.1-7</td>
<td>SIEMPRE</td>
</tr>
<tr>
<td></td>
<td>Imagen SC</td>
<td>Tabla 6.1-8</td>
<td>SIEMPRE</td>
</tr>
<tr>
<td></td>
<td>Común de SOP</td>
<td>Tabla 6.1-9</td>
<td>SIEMPRE</td>
</tr>
</tbody>
</table>
6.1.1.2. Módulo común

Tabla 6.1-2

MÓDULO DE PACIENTE DE LAS INSTANCIAS DE SOP CREADAS

<table>
<thead>
<tr>
<th>Nombre de atributo</th>
<th>Etiqueta</th>
<th>VR</th>
<th>Valor</th>
<th>Presencia de valor</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre del paciente</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Entrada de usuario o archivo de script. 64 caracteres como máximo</td>
<td>SIEMPRE</td>
<td>USUARIO</td>
</tr>
<tr>
<td>ID de paciente</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Entrada de usuario o archivo de script. 64 caracteres como máximo</td>
<td>SIEMPRE</td>
<td>USUARIO</td>
</tr>
<tr>
<td>Fecha de nacimiento del paciente</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Siempre vacío. Longitud cero</td>
<td>VNSP</td>
<td>USUARIO</td>
</tr>
<tr>
<td>Sexo del paciente</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Entrada de usuario o archivo de script</td>
<td>SIEMPRE</td>
<td>USUARIO</td>
</tr>
</tbody>
</table>

6.1.1.3. Módulos de la imagen de captura secundaria

Tabla 6.1-3

MÓDULO DE ESTUDIO GENERAL DE LAS INSTANCIAS DE SOP CREADAS

<table>
<thead>
<tr>
<th>Nombre de atributo</th>
<th>Etiqueta</th>
<th>VR</th>
<th>Valor</th>
<th>Presencia de valor</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID de instancia del estudio</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fecha del estudio</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Siempre vacío</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Hora del estudio</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Siempre vacío</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Número de acceso</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Siempre vacío</td>
<td>VNSP</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabla 6.1-4

MÓDULO DE SERIE GENERAL DE LAS INSTANCIAS DE SOP CREADAS

<table>
<thead>
<tr>
<th>Nombre de atributo</th>
<th>Etiqueta</th>
<th>VR</th>
<th>Valor</th>
<th>Presencia de valor</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalidad</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID de instancia de la serie</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabla 6.1-5

MÓDULO DE EQUIPO DE SC DE LAS INSTANCIAS DE SOP CREADAS

<table>
<thead>
<tr>
<th>Nombre de atributo</th>
<th>Etiqueta</th>
<th>VR</th>
<th>Valor</th>
<th>Presencia de valor</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalidad</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tipo de conversión</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabla 6.1-6
MÓDULO DE IMAGEN GENERAL DE LAS INSTANCIAS DE SOP DE SC CREADAS

<table>
<thead>
<tr>
<th>Nombre de atributo</th>
<th>Etiqueta</th>
<th>VR</th>
<th>Valor</th>
<th>Presencia</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de imagen</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Descripción de la derivación</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Compresión de imagen con pérdida</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabla 6.1-7
MÓDULO DE PÍXEL DE IMAGEN DE LAS INSTANCIAS DE SOP DE SC CREADAS

<table>
<thead>
<tr>
<th>Nombre de atributo</th>
<th>Etiqueta</th>
<th>VR</th>
<th>Valor</th>
<th>Presencia</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datos de píxeles</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Archivos de imágenes seleccionadas por el usuario (p. ej., JPEG)</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Muestras por pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Interpretación fotométrica</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Configuración planar</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Filas</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Columnas</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site-Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Nombre de atributo</td>
<td>Etiqueta</td>
<td>VR</td>
<td>Valor</td>
<td>Presencia de valor</td>
<td>Origen</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>-----</td>
<td>--</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Bits asignados</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site−Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bits almacenados</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site−Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bit elevado</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site−Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Representación de pixel</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site−Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de atributo</th>
<th>Etiqueta</th>
<th>VR</th>
<th>Valor</th>
<th>Presencia de valor</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha de la captura secundaria</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Fecha de creación del archivo de imagen (p. ej., JPEG)</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Hora de la captura secundaria</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Hora de creación del archivo de imagen (p. ej., JPEG)</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de atributo</th>
<th>Etiqueta</th>
<th>VR</th>
<th>Valor</th>
<th>Presencia de valor</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjunto de caracteres específico</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>“IOS_IR 100” o “ISO_IR_144”</td>
<td>ANSP</td>
<td>CONFIG</td>
</tr>
<tr>
<td>UID de clase de SOP</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>“1.2.840.10008.5.1.4.1.1.7”</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID de instancia de SOP</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site−Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Designador de esquemas de codificación</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Generado por la aplicación DICOM del sistema ecográfico Site−Rite® 8</td>
<td>SIEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Declaración de conformidad de DICOM para la aplicación DICOM del sistema ecográfico Site–Rite® 8
Nederlands

DICOM-conformiteitsverklaring voor
Site~Rite® 8 ultrasoon systeem DICOM

Naam van het bedrijf: BARD Access Systems, Inc.

Naam van het product: Site~Rite® 8 ultrasoon systeem DICOM

Versie: 1.0-rev. A-1

Intern documentnummer: 1190674

Datum: 20 april 2015
1. CONFORMITEITSVERKLARING IN HET KORT

De functionaliteit van het Site~Rite® 8 ultrasone systeem DICOM aanvaardt standaard JPEG-rasterbeelden van het ultrasone apparaat en genereert DICOM-elementen voor ultrasone beelden en naderhand bewerkte DICOM-elementen ter ondersteuning van ECG-golfvormbeelden op basis van de geselecteerde patiëntinformatie. Bovendien zorgt zij ervoor dat de gebruiker patiënt-/onderzoeksinformatie handmatig kan invoeren. Zij voorziet eveneens in de nodige DICOM-diensten om beelden naar een PACS-archief over te brengen.

Tabel 1-1 geeft een overzicht van netwerkdiensten uitgevoerd door de Site~Rite® 8 ultrasoon systeem DICOM-toepassing.

<table>
<thead>
<tr>
<th>SOP-klassen</th>
<th>Gebruiker van dienst (SCU)</th>
<th>Provider van dienst (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overbrenging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrasoon beeld</td>
<td>Ja</td>
<td>Nee</td>
</tr>
<tr>
<td>Naderhand bewerkt beeld</td>
<td>Ja</td>
<td>Nee</td>
</tr>
</tbody>
</table>
2. **INHOUDSOPGAVE**

1. CONFORMITEITSVERKLARING IN HET KORT .. 2
2. INHOUDSOPGAVE ... 3
3. INLEIDING ... 4
 3.1. EERDERE VERSIES .. 4
 3.2. LEZERS .. 4
 3.3. OPMERKINGEN ... 4
 3.4. TERMINOLOGIE EN DEFINITIES ... 4
 3.5. BASISSTERMEN VAN DICOM-COMMUNICATIE .. 6
 3.6. AFKORTINGEN ... 7
 3.7. REFERENTIES ... 7
4. NETWERKEN ... 8
 4.1. IMPLEMENTATIEMODEL ... 8
 4.1.1. Gegevensstroom van de toepassing .. 8
 4.1.2. Functionele definitie van TE's .. 8
 4.1.2.1. Functionele definitie van opslagtoepassingsentiteit ... 8
 4.1.2.2. Volgorde van reële activiteiten ... 9
 4.2. TE-SPECIFICATIES ... 9
 4.2.1. Specificatie van opslagtoepassingsentiteit ... 9
 4.2.1.1. SOP-klassen .. 9
 4.2.1.2. Koppelingsprocedures ... 10
 4.2.1.2.1. Algemeen .. 10
 4.2.1.2.2. Aantal koppelingen .. 10
 4.2.1.2.3. Asynchrone aard ... 10
 4.2.1.2.4. Implementatie om informatie te identificeren ... 10
 4.2.1.3. Procedure om koppeling te maken ... 10
 4.2.1.3.1. Activiteit – beelden versturen ... 10
 4.2.1.3.1.1. Beschrijving en volgorde van activiteiten ... 10
 4.2.1.3.1.2. Voorgestelde presentatiecontexten .. 12
 4.2.1.3.1.3. SOP specifieke conformiteit beeldopslag-SOP-klassen 12
 4.3. COMMUNICATIEPROFIELEN .. 13
 4.3.1. TCP/IP-stack ... 13
 4.3.1.1. Ondersteuning van fysieke media .. 13
4.4. UITBREIDINGEN / SPECIALISATIES / PRIVATISERINGEN .. 14
4.5. CONFIGURATIE .. 14
 4.5.1. TE-titel/presentatieadres mapping ... 14
 4.5.1.1. Titels lokale TE's .. 14
 4.5.1.2. Titels TE's op afstand .. 14
 4.5.1.2.1. SCP op afstand .. 14
4.6. STEUN VOOR UITGEBREIDE TEKENSETS ... 14
5. UITWISSELING VAN MEDIA ... 14
6. BIJLAGEN ... 15
 6.1. IOD-INHOUD .. 15
 6.1.1. Aangemaakt(e) SOP-element(en) ... 15
 6.1.1.1. IOD naderhand bewerkt beeld ... 15
 6.1.1.2. Veel voorkomende module .. 16
 6.1.1.3. Modules naderhand bewerkte beelden .. 16
3. INLEIDING

3.1. EERDERE VERSIES

<table>
<thead>
<tr>
<th>Documentversie</th>
<th>Datum van publicatie</th>
<th>Auteur</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 maart 2015</td>
<td>Tyler Durfee</td>
<td>Eerste versie</td>
</tr>
</tbody>
</table>

3.2. LEZERS

Dit document is bedoeld voor mensen die moeten begrijpen hoe de Site~Rite® 8 ultrasoon systeem DICOM-toepassing zich zal integreren in hun zorginstelling. Dit zijn dan de verantwoordelijken voor het beleid en de architectuur van het beeldvormingsnetwerk in het algemeen, maar ook zij die de integratie doen en de DICOM-functies van het product in detail moeten kennen. Dit document bevat enkele eenvoudige DICOM-definities waardoor iedere lezer kan begrijpen hoe dit product DICOM-functies integreert. Integratoren moeten evenwel alle DICOM-terminologie perfect begrijpen, weten wat de tabellen in dit document vertellen over de functionaliteit van het product en hoe die functionaliteit zich integreert in andere apparaten die compatibele DICOM-functies ondersteunen.

3.3. OPMERKINGEN

Deze DICOM-conformiteitsverklaring moet bijdragen aan een eenvoudigere integratie tussen Site~Rite® 8 ultrasoon systeem DICOM en andere DICOM-producten. De conformiteitsverklaring dient te worden gelezen en begrepen in combinatie met de DICOM-standaard. DICOM kan zelf geen interoperabiliteit garanderen. De conformiteitsverklaring maakt het wel eenvoudiger om een eerstelijnsvergelijking te maken van de interoperabiliteit tussen verschillende toepassingen die compatibele DICOM-functies ondersteunen.

Deze conformiteitsverklaring moet niet in de plaats komen van validaties met andere DICOM-apparaten om na te gaan of de beoogde informatie correct wordt uitgewisseld. De gebruiker moet zich bewust zijn van volgende belangrijke kwesties:

- De vergelijking van verschillende conformiteitsverklaringen is slechts de eerste stap op weg naar een evaluatie van de interconnectiviteit en interoperabiliteit tussen het product en andere DICOM-conforme apparaten.
- Om het volgens de zorginstelling vereiste niveau van interoperabiliteit met specifieke compatibele DICOM-apparaten te kunnen valideren, moeten testprocedures worden uitgewerkt en uitgevoerd.

3.4. TERMINOLOGIE EN DEFINITIES

Voor de volgende, in deze conformiteitsverklaring gebruikte termen zijn er informele definities ontwikkeld. De DICOM-standaard is de gezaghebbende bron voor de formele definities van deze termen.

Abstracte syntaxis – de informatie die zoals afgesproken wordt uitgewisseld tussen toepassingen, doorgaans equivalent aan een SOP-klasse (Service/Object Pair). Voorbeelden: Verification SOP Class, Modality Worklist Information Model Find SOP Class, Computed Radiography Image Storage SOP Class.

Attribuut – een eenheid van informatie in een objectdefinitie; een gegevenselement geïdentificeerd door een tag. De informatie kan een complexe gegevensstructuur (volgorde) zijn, die zelf op lager niveau uit gegevenselementen bestaat. Voorbeelden: patiënt-ID (0010,0020), volgnummer (0008,0050).
Information Object Definition (IOD) – de gespecificeerde set van attributen die een type gegevensobject vormen; staat niet voor een specifieke verschijning van het gegevensobject maar eerder voor een klasse gelijkwaardige gegevensobjecten die dezelfde eigenschappen hebben. De attributen kunnen worden aangeduid als Verplicht (type 1), Vereist maar mogelijk onbekend (type 2) of Optioneel (type 3) en aan het gebruik van een attribuut (types 1C en 2C) kunnen voorwaarden verbonden zijn. Voorbeelden: MR Image IOD, CT Image IOD, Print Job IOD.

Joint Photographic Experts Group (JPEG) – een set gestandaardiseerde beeldcompressietechnieken die bruikbaar zijn voor DICOM-toepassingen.

Koppeling – een netwerkkommunicatiekanaal dat is opgezet tussen toepassingsentiteiten.

Mediatoepassingsprofiel – de specificatie van DICOM-informatieobjecten en codering die op uitneembare media (bv. cd’s) worden uitgewisseld.

Module – een set van attributen binnen een Information Object Definition die logisch aan elkaar verwant zijn. Voorbeeld: patiëntmodule omvat naam patiënt, patiënt-ID, geboortedatum en geslacht van patiënt.

Onderhandeling – eerste fase van totstandbrenging van een koppeling waardoor toepassingsentiteiten kunnen afspreken welke gegevenstypen worden uitgewisseld en hoe die gegevens worden gecodeerd.

Overdrachtsyntax – de codering die wordt gebruikt om DICOM-informatieobjecten en -berichten uit te wisselen. Voorbeelden: JPEG-gecomprimeerde (beelden), waardeweergave little endian explicit.

Presentatiecontext – de set van DICOM-netwerkdiensten die gedurende een koppeling worden gebruikt, zoals onderhandeld tussen toepassingsentiteiten; omvat abstracte syntaxisen en overdrachtssyntaxissen.

Protocol Data Unit (PDU) – een pakket (stuk) van een DICOM-bericht dat doorheen het netwerk wordt gestuurd. Apparaten moeten vermelden tot welke grootte zij pakketten met DICOM-berichten kunnen ontvangen.

Service Class Provider (SCP) – rol van een toepassingsentiteit die een DICOM-netwerkdienst verstrekt; doorgaans een server die door een andere toepassingsentiteit aangemaakte operaties (Service Class User) uitvoert. Voorbeelden: fotoarchiverings- en -communicatiesysteem (beeldopslag SCP en beeld opvragen/ophalen SCP), radiologie-inFORMATIESysteem (modaliteitswerklijst SCP).

Service Class User (SCU) – rol van een toepassingsentiteit die een DICOM-netwerkdienst gebruikt; doorgaans een client. Voorbeelden: beeldvormingsmodaliteit (beeldopslag SCU en modaliteitswerklijst SCU), beeldvormingswerkstation (beeld opvragen/ophalen SCU).

SOP-element (Service/Object Pair) – een informatieobject; een specifiek voorbeeld van informatie die in een SOP-klasse wordt uitgewisseld. Voorbeelden: een specifiek ultrasoon beeld.

SOP-klasse (Service/Object Pair) – de specificatie van de netwerk- of mediaoverdracht (dienst) van een specifiek type gegevens (object); de basiseenheid van DICOM-interoperabiliteitspecificatie. Voorbeelden: ultrasone beeldopslagdienst, compressiesyntax, overdrachtssyntax of patiëntinformatie.
Tag – een 32-bit identificator voor een gegevenselement, in de vorm van een koppel hexadecimale getallen van vier cijfers, de “groep” en het “element”. Als het getal voor de groep oneven is, verwijst de tag naar een particulier gegevenselement (specifiek voor de fabrikant). Voorbeelden: (0010,0020) [patiënt-ID], (07FE,0010) [pixelgegevens], (0019,0210) [particulier gegevenselement].

Titel van toepassingsentiteit – de extern gekende naam van een toepassingsentiteit, die wordt gebruikt om een DICOM-toepassing te identificeren naar andere DICOM-toepassingen op het netwerk toe.

Toepassingsentiteit (TE) – een eindpunt van een DICOM-informatie-uitwisseling, met inbegrip van de DICOM-netwerk- of media-interfacesoftware; i.e. de software die DICOM-informatieobjecten of -berichten verzendt of ontvangt. Een enkel apparaat kan meerdere toepassingsentiteiten hebben.

Unieke identificator (UID, Unique Identifier) – een wereldwijd unieke “dotted decimal” string die een specifiek object of een klasse van objecten identificeert; een ISO-8824 Object Identifier. Voorbeelden: Study Instance UID, SOP Class UID, SOP Instance UID.

Veiligheidsprofiel – een set mechanismen zoals encryptie, gebruikersauthenticatie of digitale handtekeningen, gebruikt door een toepassingsentiteit om te zorgen dat de vertrouwelijkheid, integriteit en/of beschikbaarheid van uitgewisselde DICOM-gegevens gegarandeerd is.

Waarde representatie (VR, Value Representation) – het formaattype van een individueel DICOM-gegevenselement zoals tekst, een geheel getal, de naam van een persoon of een code. DICOM-informatieobjecten kunnen worden overgedragen met expliciete identificatie van het type van elk gegevenselement (Explicit VR) of zonder expliciete identificatie (Implicit VR); met Implicit VR moet de ontvangende toepassing een DICOM data dictionary gebruiken om het formaat van elk gegevenselement op te zoeken.

3.5. BASISTERMEN VAN DICOM-COMMUNICATIE

Dit punt legt niet-deskundige gebruikers die terminologie uit die in deze conformiteitsverklaring wordt gebruikt. De voornaamste termen die in de conformiteitsverklaring worden gebruikt, staan hieronder cursief. Dit punt komt niet in de plaats van de training over DICOM, en het stelt de betekenis van DICOM-termen vaak vereenvoudigd voor.

Twee toepassingsentiteiten (apparaten) die elkaar willen communiceren via een netwerk dat een DICOM-protocol gebruiken, hebben eerst tijdens een initiële “handshake” op het netwerk heel wat zaken af te spreken. Een van beide apparaten moet een koppeling opzetten (een verbinding met het andere apparaat) en vragen of het andere apparaat specifieke diensten, informatie en codering kan ondersteunen (onderhandeling).

DICOM geeft een aantal netwerkdiensten en types informatieobjecten op, die we allemaal een abstracte syntaxis voor de onderhandeling noemen. DICOM specificeert ook verscheidene methodes om gegevens te coderen. Dit zijn de zogenaamde overdrachts syntaxisen. De onderhandeling laat de initiërende toepassingsentiteit toe om combinaties voor te stellen van abstracte syntaxis en overdrachts syntaxis, die op de koppeling moeten worden gebruikt; deze combinaties noemt men presentatiecontexten. De ontvangende toepassingsentiteit aanvaardt de presentatiecontexten die zij ondersteunt.
Per presentatiecontext laat de koppelingsonderhandeling de apparaten toe om rollen te verdelen – wie is de Service Class User (SCU – client) en wie is de Service Class Provider (SCP – server). Het apparaat dat de verbinding initieert, is normaal gezien de SCU. Het clientsysteem belt dus in op de server, hoewel dit niet altijd het geval is.

De koppelingsonderhandeling zorgt er uiteindelijk voor dat het maximale netwerkpakket (PDU), veiligheidsinformatie en netwerkdienstopties (zogenaamde Verlengde negotiatie-informatie) kunnen worden uitgewisseld.

Zodra de toepassingsentiteiten over de parameters voor de koppeling hebben onderhandeld, kunnen zij beginnen met de uitwisseling van gegevens. Veel voorkomende gegevensuitwisselingen zijn query's voor werkelijsten en lijsten met opgeslagen beelden, de overdracht van beeldobjecten en -analyses (gestructureerde rapporten) en beelden die naar filmprinters worden verstuurd. Elke uitwisselbare gegevensentiteit wordt geformatteerd door de verzender in overeenstemming met de desbetreffende informatieobjectdefinitie, en verzonden met de onderhandelde overdrachtsyntax. Er is een standaard overdrachtsyntax die alle systemen moeten aanvaarden, maar in bepaalde gevallen is dit misschien niet de meest efficiënte. Elke overdracht wordt uitdrukkelijk bevestigd door de ontvanger met een reactiestatus die aanduidt of de actie is gelukt of mislukt, of dat de opvraag/ophaaloperatie nog aan de gang is.

Twee toepassingsentiteiten kunnen ook met elkaar communiceren door media uit te wisselen (bijvoorbeeld een cd-rom). Koppelingsonderhandelingen zijn hier uitgesloten en daarom werken zij allebei met een mediatoepassingsprofiel dat het “vooraf onderhandelde” mediaformaat voor de uitwisseling, de abstracte syntax en de overdrachtsyntax vastlegt.

3.6. AFKORTINGEN

In dit document worden volgende acroniemen en afkortingen gebruikt.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>TE</td>
<td>Toepassingsentiteit</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User</td>
</tr>
<tr>
<td>SOP</td>
<td>Service-Object Pair</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>UID</td>
<td>Unieke identificator</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian Explicit</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian Explicit</td>
</tr>
</tbody>
</table>

3.7. REFERENTIES

<table>
<thead>
<tr>
<th>Afkorting</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: Service Class specificaties, gratis te raadplegen op http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. NETWERKEN

4.1. IMPLEMENTATIEMODEL

4.1.1. Gegevensstroom van de toepassing

De opslagtoepassingsentiteit van de Site~Rite® 8 ultrasoon systeem DICOM-toepassing verstuurt beelden naar een TE op afstand. Deze is verbonden met een lokale reële activiteit “Beelden versturen”. “Beelden versturen” gebeurt op vraag van de gebruiker voor elk onderzoek dat is geselecteerd of voor specifieke beelden die werden geselecteerd. Wanneer geactiveerd door een gebruiker via de aanwezige gebruikersinterface in de Site~Rite® 8 ultrasoon systeem DICOM-toepassing kan elke gemarkeerde set van beelden onmiddellijk worden opgeslagen op een vooraf geconfigureerde bestemming.

4.1.2. Functionele definitie van TE's

4.1.2.1. Functionele definitie van opslagtoepassingsentiteit

De gebruiker selecteert een set van beelden die lokaal zijn opgeslagen in de Site~Rite® 8 ultrasoon systeem DICOM-toepassing en selecteert de DICOM-overdrachtknop (Verzenden) om de opslag-TE te activeren. Er wordt een koppelingsverzoek naar de vooraf geconfigureerde doel-TE gestuurd. Wanneer er met succes is onderhandeld over een presentatiecontext, wordt debeeldoverdracht opgestart. Als de koppeling niet kan worden gemaakt, wordt de gebruiker automatisch verwittigd door een foutmelding. De details worden geregistreerd. Standaard gaat de opslag-TE bij een fout niet proberen om een andere koppeling te maken.
4.1.2.2. Volgorde van reële activiteiten

Als de workflow normaal loopt, kunnen de in afbeelding 4.1-2 getoonde beperkingen in volgorde meespelen:

2. Gebruiker registreert een beeld.
4. Ontvangen beelden opslaan.

Afbeelding 4.1-2
BEPERKINGEN IN VOLGORDE

Als de workflow normaal loopt, kunnen de in afbeelding 4.1-2 getoonde beperkingen in volgorde meespelen:

2. Gebruiker registreert tijdens een onderzoek een beeld.
3. Gebruiker selecteert via de gebruikersinterface lokaal opgeslagen beelden voor verzending naar de TE op afstand en selecteert de knop "DICOM-overdracht" in de gebruikersinterface van de toepassing.
4. Toepassing leest de door gebruiker voor het onderzoek ingevoerde patiëntinformatie, genereert DICOM-elementen en verstuurt het geselecteerde DICOM-element naar een TE op afstand.

4.2. TE-SPECIFICATIES

4.2.1. Specificatie van opslagtoepassingsentiteit

4.2.1.1. SOP-klassen
De Site~Rite® 8 ultrasoon systeem DICOM-toepassing verleent standaardconformiteit aan de volgende SOP-klassen:

<table>
<thead>
<tr>
<th>Naam SOP-klasse</th>
<th>UID SOP-klasse</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op slag ultrasoon beeld</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Ja</td>
<td>Nee</td>
</tr>
<tr>
<td>Op slag naderhand bewerkt beeld</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Ja</td>
<td>Nee</td>
</tr>
</tbody>
</table>
4.2.1.2. Koppelingsprocedures

4.2.1.2.1. Algemeen
De DICOM-standaardnaam van de toepassingscontext voor DICOM 3.0 wordt altijd voorgesteld:

Tabel 4.2-2

| Naam van toepassingscontext | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Aantal koppelingen
De Site~Rite® 8 ultrasoon systeem DICOM-toepassing zet telkens één koppeling in per bestemming waarvoor een door de gebruiker geactiveerd overdrachtsverzoek wordt verwerkt. Er is steeds slechts één overdrachtstaak actief. De anderen staan in wacht tot het actieve overdrachtsverzoek is afgerond of mislukt.

Tabel 4.2-3

| Maximumaantal gelijktijdige koppelingen |

4.2.1.2.3. Asynchrone aard
De Site~Rite® 8 ultrasoon systeem DICOM-toepassing ondersteunt geen asynchrone communicatie (i.e. meerdere openstaande transacties over een enkele koppeling).

Tabel 4.2-4

| Maximumaantal openstaande asynchrone transacties | 1 |

4.2.1.2.4. Implementatie om informatie te identificeren
De implementatie-informatie voor deze toepassingsentiteit is:

Tabel 4.2-5

| Implementatieklasse UID | 1.2.826.0.1.3680043.2.360.0.3.5.4 |

4.2.1.3. Procedure om koppeling te maken

4.2.1.3.1. Activiteit – beelden versturen

4.2.1.3.1.1. Beschrijving en volgorde van activiteiten
Een gebruiker kan beelden selecteren en verzoeken om deze vanuit de gebruikersinterface van de toepassing naar een vooraf geconfigureerde bestemming te versturen. Elk verzoek wordt onmiddellijk uitgevoerd zodra de knop Versturen is geselecteerd en de gebruiker wordt op de hoogte gehouden van de status van de overdracht.
Wanneer een DICOM-overdracht is geactiveerd door de gebruiker, probeert de opslag-TE van de Site-Rite® 8 ultrasoon systeem DICOM-toepassing een koppeling te maken met de vooraf geconfigureerde doelserver en start deze een C-STORE verzoek op om de geselecteerde beelden op te slaan. Wanneer dit proces met succes een koppeling maakt met een toepassingsentiteit op afstand, draagt het elk geselecteerd element het een na het ander via de open koppeling over. De status van de overdracht wordt via de gebruikersinterface aan de gebruiker meegedeeld. Als de C-STORE reactie van op de toepassing op afstand een andere status vertoont dan Geslaagd of Waarschuwing, wordt de koppeling onderbroken en wordt de gebruiker ingelicht dat de actie is mislukt. De gebruiker kan het overdrachtsproces op elk moment opnieuw opstarten.

De opslag-AE probeert een nieuwe koppeling te maken om een C-STORE verzoek in te dienen. Indien de gebruiker meerdere beelden heeft geselecteerd, wordt voor elk beeld in volgorde over een afzonderlijke koppeling onderhandeld.

![Diagram](Afbeelding 4.2-6 Volgorde van activiteit – beelden versturen)

Afbeelding 4.2-6 illustreert in welke volgorde de interactie tussen de opslag-TE en een TE op afstand (PACS-archief of beeldmanager ter ondersteuning van Storage Service Class als een SCP) kan verlopen:

1. Gebruiker selecteert een of meerdere beelden voor overdracht.
2. Per geselecteerd beeld opent opslag-TE een koppeling met TE op afstand.
3. Eén door de gebruiker geselecteerd beeld wordt met C-STORE verzoek naar AE op afstand overgedragen en AE op afstand antwoordt met C-STORE reactie (status Geslaagd).
5. Op slag-TE verwerkt het volgende beeld via stap 2 tot 4 tot alle beelden zijn overgedragen.
4.2.1.3.1.2. Voorgestelde presentatiecontexten

De Site~Rite® 8 ultrasoon systeem DICOM-toepassing kan alle in de volgende tabel getoonde presentatiecontexten voorstellen:

Tabel 4.2.7
VOORGESTELDE PRESENTATIECONTEXT VOOR ACTIVITEIT BEELDEN VERSTUREN

<table>
<thead>
<tr>
<th>Abstracte syntaxis</th>
<th>Overdrachtsyntax</th>
<th>Rol</th>
<th>Ext. neg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naam</td>
<td>UID</td>
<td>Lijst met namen</td>
<td>UID-lijst</td>
</tr>
<tr>
<td>Opslag ultrasoon beeld</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Zie tabel 4.2-8</td>
<td>Zie tabel 4.2-8</td>
</tr>
<tr>
<td>Opslag naderhand bewerkt beeld</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Zie tabel 4.2-8</td>
<td>Zie tabel 4.2-8</td>
</tr>
</tbody>
</table>

Tabel 4.2.8
Voorgestelde overdrachtsyntax

<table>
<thead>
<tr>
<th>Naam overdrachtsyntax</th>
<th>UID overdrachtsyntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit VR Little Endian (DICOM-standaard)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Explicit VR Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Explicit VR Big Endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

Tabel 4.2.9
Compressie

<table>
<thead>
<tr>
<th>Naam overdrachtsyntax</th>
<th>UID overdrachtsyntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG Lossy</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG Lossless</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

Tijdens de overdracht van één beeld neemt de Site~Rite® 8 ultrasoon systeem DICOM-toepassing dezelfde abstracte syntaxis (i.e. SOP-klasse van het beeldelement) op in meerdere presentatiecontexten. Elk koppel van abstracte syntaxis en overdrachtsyntax is uniek en een van de voorgestelde presentatiecontexten zal voor de abstracte syntaxis de standaard overdrachtsyntax van DICOM (i.e. Implicit VR Little Endian) bevatten. Een koppelingsverzoek door de opslag-TE omvat altijd een presentatiecontext met verificatie-SOP-klasse.

4.2.1.3.1.3. **SOP specifieke conformiteit beeldopslag-SOP-klassen**

Alle door de opslag-TE ondersteunde beeldopslag-SOP-klassen vertonen, behalve indien anders vermeld, altijd hetzelfde gedrag en worden in dit punt samen beschreven.

Op basis van de opslag-SOP-klasse van het door de gebruiker geselecteerde beeldelement dient de opslag-TE bij de TE op afstand een koppelingsverzoek in met meerdere presentatiecontexten die elk een verschillende overdrachtsyntax bevatten ondersteund door de opslag-TE. Indien geen enkele presentatiecontext die past bij de opslag-SOP-klasse van het geselecteerde beeldelement dat in verwerking is wordt aanvaard, wordt de gebruiker terdege verwittigd dat de actie is mislukt.

Indien de TE op afstand voor dezelfde abstracte syntaxis meerdere presentatiecontexten aanvaardt, kiest de opslag-TE standaard voor de presentatiecontext op basis van het geselecteerde (ultrasone of naderhand bewerkte) beeld alvorens het C_STORE proces van start gaat.
Het gedrag van de opslag-TE wanneer de C-STORE reactie een statuscode bevat wordt samengevat in de volgende tabel:

Tabel 4.2-10
Gedrag bij status opslag C-STORE reactie

<table>
<thead>
<tr>
<th>Service-status</th>
<th>Verdere betekenis</th>
<th>Foutcode</th>
<th>Gedrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geslaagd</td>
<td>Geslaagd</td>
<td>0000</td>
<td>De SCP heeft het SOP-element met succes opgeslagen. Indien alle geselecteerde SOP-elementen in een overdrachtsverzoek de status Geslaagd hebben, dan wordt de overdracht als succesvol beschouwd en wordt de gebruiker verwittigd.</td>
</tr>
<tr>
<td>Waarschuwing</td>
<td>Waarschuwing</td>
<td>B000-BFFF</td>
<td>Beeldoverdracht wordt als geslaagd beschouwd.</td>
</tr>
<tr>
<td>*</td>
<td>Fout</td>
<td>Gelijk welke andere statuscode</td>
<td>De SCP kon het element niet opslaan.</td>
</tr>
</tbody>
</table>

Het gedrag van de opslag-TE tijdens de communicatiefout wordt samengevat in de volgende tabel:

Tabel 4.2-11
Gedrag bij communicatiefout voor opslag

<table>
<thead>
<tr>
<th>Uitzondering</th>
<th>Gedrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderbreking</td>
<td>De koppeling is onderbroken tijdens A-ABORT en de overdrachtstaak wordt als mislukt beschouwd. De reden wordt in het logbestand meegedeeld.</td>
</tr>
<tr>
<td>Koppeling onderbroken door de SCP of netwerklaag</td>
<td>De overdrachtstaak wordt als mislukt beschouwd. De reden wordt via het logbestand aan de gebruiker meegedeeld.</td>
</tr>
</tbody>
</table>

Opmerking: Het logbestand kan met de toetsencombinatie “shift+ctl+L” op een USB-opslagapparaat worden opgeslagen.

Een mislukte overdracht kan door de gebruiker terug worden opgestart. De toepassing zal niet automatisch proberen om de bestanden die niet konden worden overgedragen opnieuw te versturen.

De inhoud van verschillende beeldopslag-SOP-elementen die zijn aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM voldoet aan de PS 3.3 Image IOD definitie van de DICOM-standaard en wordt beschreven in punt 6.1.

4.3. COMMUNICATIEPROFIJLEN
De Site-Rite® 8 ultrasoon systeem DICOM-toepassing verstrekt DICOM V3.0 TCP/IP Network Communication ondersteuning zoals omschreven in deel 8 van de DICOM-standaard.

4.3.1. TCP/IP-stack
De Site-Rite® 8 ultrasoon systeem DICOM-toepassing werkt met de TCP/IP-stack van het computersysteem waarop ze draait.

4.3.1.1. Ondersteuning van fysieke media
De Site-Rite® 8 ultrasoon systeem DICOM-toepassing houdt geen rekening met het fysieke medium waarop TCP/IP draait; ze werkt met het medium van het computersysteem waarop ze draait.
4.4. UITBREIDINGEN/SPECIALISATIES/PRIVATISERINGEN
Niet van toepassing.

4.5. CONFIGURATIE

4.5.1. TE-titel/presentatieadres mapping
Er zijn geen standaard TE-titels voorhanden. Titels voor lokale TE’s en TE’s op afstand moeten met server-host-adressen en poortnummers op afstand worden geconfigureerd. De informatie over de geconfigureerde titels voor lokale TE’s en verbindingen op afstand wordt in het systeem opgeslagen en kan later door de opslag-TE worden gebruikt.

4.5.1.1. Titels lokale TE’s
Voor de opslag-TE kan slechts één titel voor een lokale TE worden geconfigureerd. Deze configuratie kan worden gewijzigd door de gebruiker.

4.5.1.2. Titels TE’s op afstand
De Site~Rite® 8 ultrasoon systeem DICOM-toepassing laat toe dat slechts één TE op afstand wordt geconfigureerd. De titel voor de TE op afstand, het hostadres van de server op afstand (i.e. IP-adres) en het poortnummer moeten op het ogenblik van installatie worden geconfigureerd. De gebruiker kan de configuratie voor de TE op afstand, het hostadres en het poortnummer te allen tijde wijzigen.

4.5.1.2.1. SCP op afstand
De volgende tabel beschrijft de configuratieopties voor de SCP op afstand:

<table>
<thead>
<tr>
<th>SCP-instellingen</th>
<th>Standaard</th>
<th>Configurerbaar</th>
<th>Configuratieopties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel van opslagtoepassingsentiteit</td>
<td>Nee</td>
<td>Ja</td>
<td>N.v.t.</td>
</tr>
<tr>
<td>Titel toepassingsentiteit op afstand</td>
<td>Nee</td>
<td>Ja</td>
<td>N.v.t.</td>
</tr>
<tr>
<td>IP-adres op afstand</td>
<td>Nee</td>
<td>Ja</td>
<td>N.v.t.</td>
</tr>
<tr>
<td>TCP-poort op afstand</td>
<td>Nee</td>
<td>Ja</td>
<td>N.v.t.</td>
</tr>
<tr>
<td>Overdrachtsyntax</td>
<td>Nee</td>
<td>Ja</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Compressie</td>
<td>Nee</td>
<td>Ja</td>
<td>Lossless, Lossy, geen</td>
</tr>
</tbody>
</table>

4.6. STEUN VOOR UITGEBREIDE TEKENSETS
De Site~Rite® 8 ultrasoon systeem DICOM-toepassing ondersteunt de volgende tekensets:
- ISO-IR 6 (standaard): basis G0-set
- ISO-IR 100: Latijns alfabet nr. 1
Ook ondersteunt de Site~Rite® 8 ultrasoon systeem DICOM-toepassing het gebruik van volgend tekenrepertoire in de geldende Value Representations, zoals naam van de patiënt, omschrijving van het onderzoek en omschrijving van de reeks.
- ISO_IR 144 (ISO 8859-5:1988 extra set Latijns/cyrillisch alfabet)

5. UITWISSELING VAN MEDIA
De Site~Rite® 8 ultrasoon systeem DICOM-toepassing ondersteunt geen opslag van media.
6. BIJLAGEN

6.1. IOD-INHOUD

6.1.1. Aangemaakt(e) SOP-element(en)

Tabel 6.1-1 specificeert de attributen van een ultrasoon/naderhand bewerkt beeld dat is overgedragen door de opslag-TE van de Site-Rite® 8 ultrasoon systeem DICOM-toepassing.

Volgende tabellen gebruiken een aantal afkortingen. De afkortingen die in de kolom “Aanwezigheid van …” worden gebruikt, zijn:

- **WNAA**: Waarde niet altijd aanwezig (attribuut stuurde lengte nul indien geen waarde aanwezig is)
- **ANAA**: Attribuut niet altijd aanwezig
- **ALTIJD**: Altijd aanwezig
- **LEEG**: Attribuut wordt verzonden zonder een waarde

De afkortingen die in de kolom “Bron” worden gebruikt:

- **GEBRUIKER**: De waarde van het attribuut is ingevoerd door de gebruiker
- **AUTO**: De waarde van het attribuut wordt automatisch aangemaakt
- **CONFIG**: De waarde van het attribuut is een configureerbare parameter

6.1.1.1. IOD naderhand bewerkte beeld

<table>
<thead>
<tr>
<th>Tabel 6.1-1</th>
<th>IOD VOOR AANGEMAAKTE ULTRASONE EN NADERHAND BEWERKTE SOP-ELEMENTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE</td>
<td>Module</td>
</tr>
<tr>
<td>Patiënt</td>
<td>Naam patiënt</td>
</tr>
<tr>
<td>Onderzoek</td>
<td>Algemeen onderzoek</td>
</tr>
<tr>
<td>Reeks</td>
<td>Algemene reeks</td>
</tr>
<tr>
<td>Apparatuur</td>
<td>SC-apparatuur</td>
</tr>
<tr>
<td>Beeld</td>
<td>Algemeen beeld</td>
</tr>
<tr>
<td></td>
<td>Beeldpixel</td>
</tr>
<tr>
<td></td>
<td>SC-beeld</td>
</tr>
<tr>
<td></td>
<td>SOP veel voorkomend</td>
</tr>
</tbody>
</table>
6.1.1.2. Veel voorkomende module

Tabel 6.1-2
PATIËNTMODULE VAN AANGEMAAKTE SOP-ELEMENTEN

<table>
<thead>
<tr>
<th>Naam van attribuut</th>
<th>Tag</th>
<th>VR</th>
<th>Waarde</th>
<th>Aanwezigheid van waarde</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naam van patiënt</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Ingevoerd door gebruiker of scriptbestand. Maximaal 64 tekens</td>
<td>ALTIJD</td>
<td>GEBRUIKER</td>
</tr>
<tr>
<td>Patiënt-ID</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Ingevoerd door gebruiker of scriptbestand. Maximaal 64 tekens</td>
<td>ALTIJD</td>
<td>GEBRUIKER</td>
</tr>
<tr>
<td>Geboortedatum van patiënt</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Altijd leeg. Lengte nul</td>
<td>WNAA</td>
<td>GEBRUIKER</td>
</tr>
<tr>
<td>Geslacht van patiënt</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Ingevoerd door gebruiker of scriptbestand</td>
<td>ALTIJD</td>
<td>GEBRUIKER</td>
</tr>
</tbody>
</table>

Tabel 6.1-3
ALGEMENE ONDERZOEKSMODULE VAN AANGEMAAKTE SOP-ELEMENTEN

<table>
<thead>
<tr>
<th>Naam van attribuut</th>
<th>Tag</th>
<th>VR</th>
<th>Waarde</th>
<th>Aanwezigheid van waarde</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Instance UID</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Datum van onderzoek</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Altijd leeg</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tijdstip van onderzoek</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Altijd leeg</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Volgnummer</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Altijd leeg</td>
<td>WNAA</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabel 6.1-4
ALGEMENE REEKSMODULE VAN AANGEMAAKTE SOP-ELEMENTEN

<table>
<thead>
<tr>
<th>Naam van attribuut</th>
<th>Tag</th>
<th>VR</th>
<th>Waarde</th>
<th>Aanwezigheid van waarde</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modaliteit</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Series Instance UID</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. Modules naderhand bewerkte beelden

Tabel 6.1-5
SC-APPARATUURMODULE VAN AANGEMAAKTE SC SOP-ELEMENTEN

<table>
<thead>
<tr>
<th>Naam van attribuut</th>
<th>Tag</th>
<th>VR</th>
<th>Waarde</th>
<th>Aanwezigheid van waarde</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modaliteit</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Conversietype</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabel 6.1-6
ALGEMENE BEELDMODULE VAN AANGEMAAKTE SC SOP-ELEMENTEN

<table>
<thead>
<tr>
<th>Naam van attribuut</th>
<th>Tag</th>
<th>VR</th>
<th>Waarde</th>
<th>Aanwezigheid van waarde</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beeldtype</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Beschrijving van afleiding</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Lossy beeldcompressie</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabel 6.1-7
BEELDPIXELMODULE VAN AANGEMAAKTE SC SOP-ELEMENTEN

<table>
<thead>
<tr>
<th>Naam van attribuut</th>
<th>Tag</th>
<th>VR</th>
<th>Waarde</th>
<th>Aanwezigheid van waarde</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixelgegevens</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Door gebruiker geselecteerde beeldbestanden (i.e. JPEG)</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Samples per pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fotometrische interpretatie</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Planaire configuratie</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Rijen</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kolommen</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitsToegewezen</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitsOpgeslagen</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>HoogBit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>PixelWeergave</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabel 6.1-8
SC-BEELDMODULE VAN AANGEMAAKTE SC SOP-ELEMENTEN

<table>
<thead>
<tr>
<th>Naam van attribuut</th>
<th>Tag</th>
<th>VR</th>
<th>Waarde</th>
<th>Aanwezigheid van waarde</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum van bewerking naderhand</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Aanmaakdatum beeldbestand (i.e. JPEG)</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tijdstip van bewerking naderhand</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Aanmaaktijdstip beeldbestand (i.e. JPEG)</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabel 6.1-9
SOP VEEL VOORKOMEND MODULE VAN AANGEMAAKTE SC SOP-ELEMENTEN

<table>
<thead>
<tr>
<th>Naam van attribuut</th>
<th>Tag</th>
<th>VR</th>
<th>Waarde</th>
<th>Aanwezigheid van waarde</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifieke tekenset</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>"IOS_IR 100" or "ISO_IR_144"</td>
<td>ANAA</td>
<td>CONFIG</td>
</tr>
<tr>
<td>UID SOP-klasse</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>"1.2.840.10008.5.1.4.1.1.7"</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID SOP-element</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
<tr>
<td>Designator coderingsschema</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Aangemaakt door Site-Rite® 8 ultrasoon systeem DICOM</td>
<td>ALTIJD</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Declaração de conformidade DICOM para aplicação DICOM do Sistema de ultra-sons Site~Rite® 8

Nome do produto: DICOM do Sistema de ultra-sons Site~Rite® 8

Versão: 1.0-rev. A-1

Número de documento interno: 1190674

Data: 20 de Abril de 2015
1. DESCRIÇÃO GERAL DA DECLARAÇÃO DE CONFORMIDADE

A funcionalidade DICOM do Sistema de ultra-sons Site~Rite® 8 aceita imagens em quadrícula JPEG padrão, provenientes do dispositivo de ultra-sons e gera instâncias DICOM de imagens de ultra-sons para imagens de ultra-sons e instâncias DICOM de captura secundária para suportar imagens de formas de onda de ECG, com base nas informações do paciente selecionadas. Adicionalmente, permite ao utilizador introduzir manualmente informações de paciente/estudo. Também implementa os serviços DICOM necessários para transferir imagens para um arquivo PACS.

A Tabela 1-1 fornece uma descrição geral dos serviços de rede efetuado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8.

<table>
<thead>
<tr>
<th>Tabela 1-1</th>
<th>Serviço de rede</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes SOP</td>
<td>Utilizador de serviço (SCU)</td>
</tr>
<tr>
<td>Transferir</td>
<td></td>
</tr>
<tr>
<td>Imagem de ultra-sons</td>
<td>Sim</td>
</tr>
<tr>
<td>Imagem de captura secundária</td>
<td>Sim</td>
</tr>
</tbody>
</table>
2. ÍNDICE

1. DESCRIÇÃO GERAL DA DECLARAÇÃO DE CONFORMIDADE .. 2
2. ÍNDICE ... 3
3. INTRODUÇÃO ... 4
 3.1. HISTÓRICO DE REVISÕES .. 4
 3.2. PÚBLICO-ALVO .. 4
 3.3. OBSERVAÇÕES .. 4
 3.4. TERMOS E DEFINIÇÕES ... 4
 3.5. ASPETOS BÁSICOS DA COMUNICAÇÃO DICOM ... 6
 3.6. ABREVIAÇÕES ... 7
 3.7. REFERÊNCIAS .. 8
4. REDE ... 8
 4.1. MODELO DE IMPLEMENTAÇÃO .. 8
 4.1.1. Fluxo de dados de aplicação ... 8
 4.1.2. Definição funcional de AEs ... 9
 4.1.2.1. Definição funcional de Entidade da aplicação de armazenamento 9
 4.1.2.2. Seqüência de atividades do mundo real ... 9
 4.2. ESPECIFICAÇÕES DA AE .. 10
 4.2.1. Especificação da Entidade da aplicação de armazenamento 10
 4.2.1.1. Classes SOP ... 10
 4.2.1.2. Políticas de associação .. 10
 4.2.1.2.1. Geral .. 10
 4.2.1.2.2. Número de associações ... 10
 4.2.1.2.3. Natureza assíncrona .. 10
 4.2.1.2.4. Informações de identificação da implementação 10
 4.2.1.3. Política de iniciação de associação ... 11
 4.2.1.3.1. Atividade – Enviar imagens ... 11
 4.2.1.3.1.1. Descrição e sequência de atividades ... 11
 4.2.1.3.1.2. Contextos de apresentação propostos .. 12
 4.2.1.3.1.3. Classes SOP de armazenamento de imagens em conformidade com SOP .. 13
 4.3. PERFIS DE COMUNICAÇÕES ... 14
 4.3.1. Grupo TCP/IP ... 14
 4.3.1.1. Suporte físico .. 14
 4.4. EXTENSÕES / ESPECIALIZAÇÕES / PRIVATIZAÇÕES 14
 4.5. CONFIGURAÇÃO ... 14
 4.5.1. Título de AE/Mapaamento do endereço de apresentação 14
 4.5.1.1. Títulos de AR local ... 14
 4.5.1.2. Títulos de AR remota .. 14
 4.5.1.2.1. SCP remoto .. 15
 4.6. SUORTE PARA CONJUNTOS ALARGADOS DE CARATERES 15
5. TROCA DE SUPORTES ... 15
6. ANEXOS ... 15
 6.1. CONTEÚDO IOD.. 15
 6.1.1. Instância(s) SOP criada(s) ... 15
 6.1.1.1. IOD de imagens de captura secundária .. 16
 6.1.1.2. Módulo comum ... 16
 6.1.1.3. Módulos de imagens de captura secundária ... 17
3. INTRODUÇÃO

3.1. HISTÓRICO DE REVISÕES

<table>
<thead>
<tr>
<th>Versão do documento</th>
<th>Data de emissão</th>
<th>Autor</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 de Março de 2015</td>
<td>Tyler Durfee</td>
<td>Versão inicial</td>
</tr>
</tbody>
</table>

3.2. PÚBLICO-ALVO

Este documento foi redigido para pessoas que necessitam de compreender a forma como a aplicação DICOM do Sistema de ultra-sons Site–Rite® 8 se irá integrar na sua instituição de cuidados de saúde. O público-alvo inclui as pessoas responsáveis pela política e arquitetura da rede de imagiologia geral e também integradores que necessitem de ter uma compreensão detalhada das funcionalidades DICOM do produto. Este documento inclui algumas definições DICOM básicas, por isso, qualquer leitor pode compreender a forma como este produto implementa as funcionalidades DICOM. Contudo, espera-se que os integradores compreendam toda a terminologia DICOM, a forma como as tabelas neste documento se relacionam com a funcionalidade do produto e a forma como essa funcionalidade se integra com outros dispositivos que suportam funcionalidades DICOM compatíveis.

3.3. OBSERVAÇÕES

O âmbito desta Declaração de conformidade DICOM é facilitar a integração entre a aplicação DICOM do Sistema de ultra-sons Site–Rite® 8 e outros produtos DICOM. A Declaração de conformidade deve ser lida e compreendida juntamente com a Norma DICOM. O protocolo DICOM por si mesmo não garante a interoperabilidade. No entanto, a Declaração de conformidade facilita uma comparação de primeiro nível para interoperabilidade entre aplicações diferentes que suportem a funcionalidade DICOM compatível.

Esta Declaração de conformidade não se destina a substituir a validação com outro equipamento DICOM para garantir a troca adequada de informações previstas. De facto, o utilizador deve estar ciente das seguintes questões:

— A comparação de Declarações de conformidade diferentes é apenas o primeiro passo para avaliar a interconectividade e interoperabilidade entre o produto e outro equipamento em conformidade com o protocolo DICOM.
— Os procedimentos de teste devem ser definidos e executados para validar o nível necessário de interoperabilidade com equipamento compatível com DICOM específico, conforme estabelecido pela instituição de cuidados de saúde.

3.4. TERMOS E DEFINIÇÕES

São fornecidas definições informais para os seguintes termos utilizados nesta Declaração de conformidade. A Norma DICOM é a fonte oficial para definições formais destes termos.

Associación – uma configuração de canais de comunicação de rede entre Entidades da aplicação.

Atributo – uma unidade de informação numa definição de objeto; um elemento de dados identificado por um marcador. A informação pode ser uma estrutura de dados complexa (Seqüência), composta ela mesma por elementos de dados de nível inferior. Exemplos: ID do paciente (0010,0020), Número de acesso (0008,0050).
Classe de pares de objeto de serviços (SOP) – a especificação da transferência de rede ou de suporte (serviço) de um particular tipo de dados (objeto); a unidade fundamental de especificação de interoperabilidade DICOM. Exemplos: Serviço de armazenamento de imagens de ultra-sons, Sintaxe de compressão, Sintaxe de transferência ou informações do paciente.

Contexto da aplicação – a especificação do tipo de comunicação utilizada entre Entidades da aplicação. Exemplo: Protocolo de rede DICOM.

Contexto de apresentação – o conjunto de serviços de rede DICOM utilizados numa Associação, conforme negociado entre Entidades da aplicação; inclui Sintaxes abstratas e Sintaxes de transferência.

Definição de objeto de informação (IOD) – o conjunto especificado de atributos que inclui um tipo de objeto de dados; não representa uma instância específica do objeto de dados, mas sim uma classe de objetos semelhantes que tenham as mesmas propriedades. Os Atributos podem ser especificados como Obrigatórios (Tipo 1), Necessários mas possivelmente desconhecidos (Tipo 2) ou Opcionais (Tipo 3) e poderão existir condições associadas à utilização de um Atributo (Tipos 1C e 2C). Exemplos: IOD de imagem de RM, IOD de Imagem de TC, IOD de trabalho de impressão.

Entidade da aplicação (AE) – um ponto final de uma troca de informações DICOM, incluindo a rede DICOM ou software de interface multimédia; ou seja, o software que envia ou recebe objetos ou mensagens de informações DICOM. Um único dispositivo pode ter múltiplas Entidades da aplicação.

Fornecedor de classes de serviços (SCP) – papel de uma Entidade da aplicação que fornece um serviço de rede DICOM; tipicamente, um servidor que efetua operações solicitadas por outra Entidade da aplicação (Utilizador de classes de serviços). Exemplos: Arquivo de imagens e Sistema de comunicação (SCP de armazenamento de imagens e SCP de consulta/recuperação de imagens), Sistema de informações de radiologia (SCP da lista de trabalho por modalidade).

Identificador exclusivo (UID) – cadeia globalmente exclusiva “decimal com pontos” que identifica um objeto ou classe de objetos específicos, um Identificador de objetos ISO-8824. Exemplos: UID de instância do estudo, UID da classe de SOP, UID da instância de SOP.

Instância de pares de objeto de serviços (SOP) – um objeto de informação trocado numa classe SOP. Exemplos: uma imagem de ultra-sons específica.

Joint Photographic Experts Group (JPEG) – um conjunto de técnicas de compressão de imagens normalizadas, disponível para utilização por aplicações DICOM.

Marcador – um identificador de 32 bits para um elemento de dados, representado como um par de números hexadecimais de quatro dígitos, o “grupo” e o “elemento”. Se o número do “grupo” for ímpar, o marcador refere-se a um elemento de dados privado (específico do fabricante). Exemplos: (0010,0020) [ID do paciente], (07FE,0010) [Dados de pixels], (0019,0210) [elemento de dados privados].

Módulo – um conjunto de Atributos numa Definição de objeto de informação que estejam logicamente relacionados uns com os outros. Exemplo: O Módulo do paciente inclui Nome do paciente, ID do paciente, Data de nascimento do paciente e Sexo do paciente.
Declaração de conformidade DICOM para aplicação DICOM

Negociação – primeira fase do estabelecimento da Associação que permite às Entidades da aplicação acordarem quanto aos tipos de dados a trocar e a forma como os dados serão codificados.

Perfil da aplicação de suportes – a especificação de objetos de informação DICOM e codificação trocada em suportes amovíveis (por ex., CDs)

Perfil de segurança – um conjunto de mecanismos, como encriptação, autenticação do utilizador ou assinaturas digitais, utilizados por uma Entidade da aplicação para garantir confidencialidade, integridade e/ou disponibilidade de dados DICOM trocados.

Representação de valores (VR) – o tipo de formato de um elemento de dados DICOM individual, como um texto, um número inteiro, o nome de uma pessoa ou um código. Os objetos de informação DICOM podem ser transmitidos com identificação explícita do tipo de elemento de dados (VR explícita) ou sem identificação explícita (VR implícita); com VR implícita, a aplicação de receção deve utilizar um dicionário de dados DICOM para procurar o formato de cada elemento de dados.

Sintaxe abstrata – as informações acordadas para serem trocadas entre aplicações, geralmente equivalentes a uma Classe de pares de objeto de serviços (SOP). Exemplos: Verificação de Classe de SOP, Classe de SOP de procura de modelo de informações da lista de trabalho por modalidade, Classe de SOP de armazenamento de imagem de radiografia computorizada.

Sintaxe de transferência – a codificação utilizada para troca de objetos e mensagens de informações DICOM. Exemplos: JPEG comprimidas (imagens), representação de valores “little endian explicit”.

Título da entidade da aplicação – o nome conhecido externamente de uma Entidade da aplicação, utilizado para identificar uma aplicação DICOM com outras aplicações DICOM na rede.

Unidade de dados de protocolo (PDU) – um pacote (peça) de uma mensagem DICOM enviada pela rede. Os dispositivos devem especificar o pacote de tamanho máximo que podem receber para mensagens DICOM.

Utilizador de classes de serviços (SCU) – papel de uma Entidade da aplicação que utiliza um serviço de rede DICOM; tipicamente, um cliente. Exemplos: modalidade de imagiologia (SCU de armazenamento de imagens e SCU da lista de trabalho por modalidade), estação de trabalho de imagiologia (SCU de consulta/recuperação de imagens).

3.5. ASPETOS BÁSICOS DA COMUNICAÇÃO DICOM

Esta secção descreve a terminologia utilizada nesta Declaração de conformidade para o não especialista. Os termos chave utilizados na Declaração de conformidade são realçados em itálico em baixo. Esta secção não substitui formação sobre o DICOM e efetua muitas simplificações quanto aos significados de termos DICOM.

Duas entidades de aplicação (dispositivos) que pretendem comunicar uma com a outra, numa rede, utilizando protocolo DICOM, devem concordar primeiro com várias coisas durante um “handshake” de rede inicial. Um dos dois dispositivos deve iniciar uma Associação (uma ligação com o outro dispositivo) e perguntar se podem ser suportados serviços específicos, informações e codificação pelo outro dispositivo (Negociação).
O DICOM especifica um número de serviços de rede e tipos de objetos de informações, cada um dos quais é denominado por Sintaxe abstrata para a Negociação. O DICOM também especifica uma variedade de métodos para codificar dados, indicados por Sintaxes de transferência. A Negociação permite que a Entidade da aplicação que inicia proponha combinações de Sintaxe abstrata e Sintaxe de transferência a utilizar na Associação; estas combinações são designadas Contextos de apresentação. A Entidade da aplicação que recebe aceita os Contextos de apresentação que suporta.

Para cada Contexto de apresentação, a Negociação da associação também permite que os dispositivos concordem com Funções – qual é o Utilizador de classes de serviço (SCU – cliente) e qual é o Fornecedor de classes de serviços (SCP – servidor). Normalmente, o dispositivo que inicia é o SCU, ou seja, o sistema do cliente liga ao servidor, mas nem sempre.

Por último, a Negociação da associação permite a troca de tamanho máximo do pacote de rede (PDU), informações de segurança e opções de serviços de rede (denominada informação de Negociação alargada).

As Entidades da aplicação, tendo negociado os parâmetros de Associação, podem começar agora a trocar dados. As trocas de dados comuns incluem pedidos de listas de trabalho e listas de imagens armazenadas, transferência de objetos de imagens e análises (relatórios estruturados) e enviar imagens para impressoras de película. Cada unidade de dados permutável é formatada pelo emissor, em conformidade com a Definição de objeto de informação e enviada utilizando a Sintaxe de transferência negociada. Existe uma Sintaxe de transferência predefinida que todos os sistemas devem aceitar mas pode não ser muito eficiente em alguns casos de utilização. Cada transferência é explicitamente confirmada pelo recetor com um Estado de resposta indicando sucesso, falha ou que as operações de consulta ou recuperação continuam a decorrer.

Duas Entidades da aplicação também podem comunicar uma com a outra trocando suportes (como CD-R). Como não existe nenhuma Negociação de associação possível, utilizam ambas um Perfil de aplicação de suportes que especifica o formato do suporte de troca "pré-negociado", Sintaxe abstrata e Sintaxe de transferência.

3.6. ABREVIATURAS

Os acrónimos e abreviaturas seguintes são utilizados neste documento:

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>AE</td>
<td>Entidade da aplicação</td>
</tr>
<tr>
<td>PDU</td>
<td>Unidade de dados de protocolo</td>
</tr>
<tr>
<td>SCP</td>
<td>Fornecedor de classes de serviços</td>
</tr>
<tr>
<td>SCU</td>
<td>Utilizador de classes de serviços</td>
</tr>
<tr>
<td>SOP</td>
<td>Pares de objeto de serviços</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Protocolo de controlo de transmissão/Protocolo de Internet</td>
</tr>
<tr>
<td>UID</td>
<td>Identificador exclusivo</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian Explicit</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian Explicit</td>
</tr>
</tbody>
</table>
3.7. REFERÊNCIAS

<table>
<thead>
<tr>
<th>DICOM PS3.4</th>
<th>DICOM PS3.4: Especificações de classes de serviços, disponíveis gratuitamente em http://medical.nema.org/</th>
</tr>
</thead>
</table>

4. REDE

4.1. MODELO DE IMPLEMENTAÇÃO

4.1.1. Fluxo de dados de aplicação

Figura 4.1-1
Diagrama de fluxo de dados da aplicação

A Entidade da aplicação de armazenamento da aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 envia imagens para uma AE remota. Está associada a uma atividade associada ao mundo real local "Enviar imagens". "Enviar imagens" é efetuado a pedido do utilizador para cada estudo concluído ou para imagens específicas selecionadas. Quando ativado por um utilizador através da interface de utilizador fornecida na aplicação DICOM do Sistema de ultra-sons Site~Rite® 8, cada conjunto de imagens marcado pode ser armazenado imediatamente num destino pré-configurado.
4.1.2. Definição funcional de AEs

4.1.2.1. Definição funcional de Entidade da aplicação de armazenamento
O utilizador seleciona um conjunto de imagens armazenado localmente na aplicação DICOM do Sistema de ultra-sons Site-Rite® 8 e seleciona o botão (Enviar) de transferência DICOM para ativar a AE de armazenamento. Um pedido associado é enviado para a AE de destino pré-configurada e, mediante negociação bem-sucedida de um Contexto de apresentação, a transferência de imagens é iniciada. Se não for possível estabelecer a associação, o utilizador é imediatamente notificado com uma notificação de erro e os detalhes são registados. Por defeito, a AE de armazenamento não tentará iniciar outra associação no caso de uma condição de erro.

4.1.2.2. Sequência de atividades do mundo real

Com a condição de fluxo de trabalho normal, aplicam-se as restrições de sequência ilustradas na Figura 4.1-2:

1. O utilizador introduz informações de paciente e do estudo.
2. O utilizador capta uma imagem.
3. O utilizador seleciona a imagem e envia-a.
4. Armazenar imagens adquiridas.

Figura 4.1-2
RESTRIÇÕES DE SEQUÊNCIA

- O utilizador introduz ou atualiza informações do paciente e do estudo, quando aplicável.
- O utilizador capta uma imagem durante o estudo.
- O utilizador seleciona imagens de armazenamento no local através da interface do utilizador para transmissão à AE remota e seleciona o botão “Transferência DICOM” na interface do utilizador da aplicação.
- A aplicação lê as informações do paciente introduzidas pelo utilizador para o estudo, gera instâncias DICOM e envia a instância DICOM selecionada para uma AE remota.
4.2. ESPECIFICAÇÕES DA AE

4.2.1. Especificação da Entidade da aplicação de armazenamento

4.2.1.1. Classes SOP

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 apresenta uma conformidade padrão com as seguintes classes SOP:

<table>
<thead>
<tr>
<th>Nome da Classe SOP</th>
<th>UID de Classe SOP</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armazenamento de imagens de ultra-sons</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>Armazenamento de imagens de captura secundária</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Sim</td>
<td>Não</td>
</tr>
</tbody>
</table>

4.2.1.2. Políticas de associação

4.2.1.2.1. Geral

O nome de contexto da aplicação DICOM padrão para DICOM 3.0 é sempre proposto:

| Nome de contexto da aplicação | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Número de associações

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 inicia uma Associação a uma hora para cada destino para o qual estiver a ser processado um pedido de transferência pelo utilizador. Apenas uma tarefa de transferência estará ativa de cada vez, as outras permanecem pendentes até o pedido de transferência ativo estar concluído ou falhar.

| Número máximo de associações em simultâneo | 1 |

4.2.1.2.3. Natureza assíncrona

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 não suporta comunicação assíncrona (isto é, múltiplas transações pendentes numa única associação).

| Número máximo de transações assíncronas pendentes | 1 |

4.2.1.2.4. Informações de identificação da implementação

As informações da implementação para esta Entidade da aplicação é:

| UID de Classe de implementação | 1.2.826.0.1.3680043.2.360.0.3.5.4 |
4.2.1.3. Política de iniciação de associação

4.2.1.3.1. Atividade – Enviar imagens

4.2.1.3.1.1. Descrição e sequência de atividades

Um utilizador pode selecionar imagens e solicitar que sejam enviadas para um destino pré-configurado a partir da interface do utilizador da aplicação. Cada pedido é efetuado imediatamente após a seleção do botão enviar e o utilizador é notificado acerca do estado da transferência.

Quando uma transferência DICOM é ativada pelo utilizador, a AE de armazenamento da aplicação DICOM do Sistema de ultra-sons Site–Rite® 8 tenta estabelecer uma associação com o servidor de destino pré-configurado e inicia um pedido C-STORE para armazenar as imagens selecionadas. Quando este processo estabelece uma Associação com sucesso a uma Entidade da aplicação, irá transferir cada instância selecionada, uma após outra, através da associação aberta. O estado da transferência é informado de volta ao utilizador, através da interface do utilizador. Se a resposta C-STORE da Aplicação remota contiver um estado que não seja Sucesso ou Aviso, em seguida, a associação é abortada e o utilizador é notificado acerca do estado de falha. O processo de transferência pode ser reiniciado pelo utilizador em qualquer altura.

A AE de armazenamento tenta iniciar uma nova Associação para emitir um pedido C-STORE. Se a seleção do utilizador contiver múltiplas imagens, em seguida, é negociada uma associação em separado para cada imagem na ordem sequencial.

![Figura 4.2-6
Sequência de atividade – Enviar imagens](image-url)
A sequência possível de interação entre a AE de armazenamento e uma AE remota (Arquivo PACS ou gestor de imagens que suporte Classes de serviços de armazenamento como SCP) é ilustrada na Figura 4.2-6:

1. O utilisateur seleciona uma ou mais imagens para transferir.
2. Para cada imagem selecionada, a AE de armazenamento abre uma Associação com AE remota.
3. Uma imagem selecionada pelo utilizador é transmitida à AE remota utilizando o pedido C-STORE e respostas da AE remota com resposta C-STORE (estado de sucesso).
4. A AE de armazenamento fecha a Associação.
5. A AE de armazenamento processa sequencialmente a imagem seguindo as etapas 2-4 acima, até todas as imagens serem transferidas.

4.2.1.3.1.2. Contextos de apresentação propostos
A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 é capaz de propor qualquer Contexto de apresentação mostrado na tabela seguinte:

Tabela 4.2-7
CONTEXTO DE APRESENTAÇÃO PROPOSTA PARA ATIVIDADE DE ENVIO DE IMAGENS

<table>
<thead>
<tr>
<th>Nome</th>
<th>Sintaxe abstrata</th>
<th>Sintaxe de transferência</th>
<th>Função</th>
<th>Neg. Ext.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armazenamento de imagens de ultra-sons</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Ver Tabela 4.2-8</td>
<td>SCU</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>Armazenamento de imagens de captura secundária</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Ver Tabela 4.2-8</td>
<td>SCU</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

Tabela 4.2-8
Sintaxe de transferência proposta

<table>
<thead>
<tr>
<th>Nome de sintaxe de transferência</th>
<th>UID de sintaxe de transferência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit VR Little Endian (predefinição DICOM)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Explicit VR Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Explicit VR Big Endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

Tabela 4.2-9
Compressão

<table>
<thead>
<tr>
<th>Nome de sintaxe de transferência</th>
<th>UID de sintaxe de transferência</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG com perdas</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG sem perdas</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

No processo de transferir uma imagem, a aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 irá incluir a mesma sintaxe abstrata (isto é, Classe SOP da instância da imagem) em múltiplos contextos de apresentação. Cada par de Sintaxe abstrata e de Sintaxe de transferência é único e um dos contextos de apresentação propostos irá conter a sintaxe de transferência predefinida DICOM (isto é, Implicit VR Little Endian) de acordo com a sintaxe abstrata. Um contexto de apresentação com Classe SOP de verificação é sempre incluído num pedido Associado pela AE de armazenamento.
4.2.1.3.1.3. Classes SOP de armazenamento de imagens em conformidade com SOP

Todas as Classes SOP de armazenamento de imagens suportadas pela AE de armazenamento exibem o mesmo comportamento, exceto quando indicado, e são descritas em conjunto nesta secção.

Com base na Classe SOP de armazenamento da instância de imagens selecionada pelo utilizador, a AE de armazenamento propõe um pedido de Associação à AE remota com múltiplos contextos de apresentação, cada um contendo uma sintaxe de transferência diferente, suportada pela AE de armazenamento. Se nenhum dos contextos de apresentação corresponder à Classe SOP de armazenamento da instância de imagens selecionada em processamento for aceite, o utilizador é devidamente notificado acerca da condição de falha.

Se forem aceites múltiplos contextos de apresentação pela AE remota para a mesma Sintaxe abstrata, a AE de armazenamento, por defeito, escolhe o contexto de apresentação com base na imagem selecionada (isto é, Captura de ultra-sons ou secundária) antes do processo C-STORE.

O comportamento da AE de armazenamento ao encontrar um código de estado na resposta C-STORE é resumido na tabela seguinte:

<table>
<thead>
<tr>
<th>Tabela 4.2-10</th>
<th>Comportamento de tratamento do estado de resposta de C-STORE se armazenamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistência técnica Estado</td>
<td>Outro significado</td>
</tr>
<tr>
<td>Sucesso</td>
<td>Sucesso</td>
</tr>
<tr>
<td>Aviso</td>
<td>Aviso</td>
</tr>
<tr>
<td>*</td>
<td>Erro</td>
</tr>
</tbody>
</table>

O comportamento da AE de armazenamento durante a falha de comunicação é resumido na tabela seguinte:

<table>
<thead>
<tr>
<th>Tabela 4.2-11</th>
<th>Comportamento de falha de comunicação de armazenamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceção</td>
<td>Comportamento</td>
</tr>
<tr>
<td>Tempo limite</td>
<td>A Associação é abortada utilizando A-ABORT e a tarefa de transferência falha. A razão é comunicada ao ficheiro de registo.</td>
</tr>
<tr>
<td>Associação abortada pelo SCP ou camada de rede</td>
<td>A tarefa de transferência falha. A razão é comunicada ao utilizador através do ficheiro de registo.</td>
</tr>
</tbody>
</table>

Nota: O ficheiro de registo pode ser guardado num dispositivo de armazenamento USB, seleccionando “shift+cntrl+L”.
Uma transferência falhada pode ser reiniciada por interação com o utilizador. A aplicação não tenta automaticamente reenviar os ficheiros que falharam a transferência.

O conteúdo de diferentes Instâncias SOP de armazenamento de imagens criado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 cumpre a definição IOD de imagens PS 3.3 da norma DICOM e encontra-se descrito na secção 6.1.

4.3. **PERFIS DE COMUNICAÇÕES**

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 fornece apoio à Comunicação de rede DICOM V3.0 TCP/IP, conforme definido na Parte 8 da Norma DICOM.

4.3.1. **Grupo TCP/IP**

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 herda o seu grupo TCP/IP do sistema informático sobre o qual executa.

4.3.1.1. **Suporte físico**

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 é indiferente ao suporte físico sobre o qual o TCP/IP executa; herda o suporte do sistema informático sobre o qual executa.

4.4. **EXTENSÕES/ESPECIALIZAÇÕES/PRIVATIZAÇÕES**

Não aplicável.

4.5. **CONFIGURAÇÃO**

4.5.1. **Título de AE/Mapeamento do endereço de apresentação**

Não são fornecidos Títulos de AE predefinidos. Devem ser configurados Títulos de AE local e remota juntamente com endereços de anfitrião do servidor remoto e números de portas. O Título de AE local configurado e as informações de ligação remota são armazenados no sistema para utilização posterior pela AE de armazenamento.

4.5.1.1. **Títulos de AR local**

Existe apenas um Título de AE configurável para a AE de armazenamento. Esta configuração pode ser modificada pelo utilizador.

4.5.1.2. **Títulos de AR remota**

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 apenas permite uma configuração da AE remota. O Título de AE remota, o endereço de anfitrião do servidor remoto (isto é, endereço IP) e o número de porta devem ser configurados no momento da instalação. O utilizador pode modificar a configuração da AE remota, o endereço de anfitrião e do número de porta.
4.5.1.2.1. SCP remoto

A tabela seguinte descreve as opções de configuração para o SCP remoto:

<table>
<thead>
<tr>
<th>Tabela 4.5-1</th>
<th>Tabela de parâmetros de configuração de SCP remoto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definições de SCP Predefinição</td>
<td>Configurável</td>
</tr>
<tr>
<td>Título da Entidade da aplicação de armazenamento Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Título da Entidade da aplicação remota Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Endereço IP remoto Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Porta TCP remota Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Sintaxe de transferência Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Compressão Não</td>
<td>Sim</td>
</tr>
</tbody>
</table>

4.6. SUPORTE PARA CONJUNTOS ALARGADOS DE CARACTERES

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 suporta os seguintes conjuntos de carateres:
- ISO-IR 6 (predefinição): Conjunto Basic G0
- ISO-IR 100: Alfabeto latino N.º 1

Adicionalmente a aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 suporta a utilização do seguinte Repertório de carateres nas representações de valores aplicáveis, como Nome de paciente, Descrição do estudo e Descrição da série.
- ISO_IR 144 (ISO 8859-5:1988 relativo a conjunto complementar do alfabeto latino/cirílico)

5. TROCA DE SUPORTES

A aplicação DICOM do Sistema de ultra-sons Site~Rite® 8 não suporta Armazenamento em suportes de dados.

6. ANEXOS

6.1. CONTEÚDO IOD

6.1.1. Instância(s) SOP criada(s)

A Tabela 6.1-1 especifica os atributos de uma imagem de captura de ultra-sons/secundária transmitida pela AE de armazenamento da aplicação DICOM do Sistema de ultra-sons Site~Rite® 8.

As tabelas seguintes utilizam uma série de abreviações. As abreviações utilizadas na coluna “Presença de …” são:

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNSP</td>
<td>Valor Nem Sempre Presente (atributo enviou zero carateres se não estiver presente nenhum valor)</td>
</tr>
<tr>
<td>ANSP</td>
<td>Atributo Nem Sempre Presente</td>
</tr>
<tr>
<td>SEMPRE</td>
<td>Sempre presente</td>
</tr>
<tr>
<td>VAZIO</td>
<td>O atributo é enviado sem um valor</td>
</tr>
</tbody>
</table>
As abreviaturas utilizadas na coluna “Origem”:

- **UTILIZADOR**: A origem do valor do atributo deve-se à introdução pelo Utilizador
- **AUTO**: O valor do atributo é gerado automaticamente
- **CONFIG**: A origem do valor do atributo é um parâmetro configurável

6.1.1.1. IOD de imagens de captura secundária

Tabela 6.1-1

Tabela 6.1-1

<table>
<thead>
<tr>
<th>IE</th>
<th>Módulo</th>
<th>Referência</th>
<th>Presença de módulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paciente</td>
<td>Nome do paciente</td>
<td>Tabela 6.1-2</td>
<td>SEMPRE</td>
</tr>
<tr>
<td>Estudo</td>
<td>Estudo geral</td>
<td>Tabela 6.1-3</td>
<td>SEMPRE</td>
</tr>
<tr>
<td>Série</td>
<td>Série geral</td>
<td>Tabela 6.1-4</td>
<td>SEMPRE</td>
</tr>
<tr>
<td>Equipamento</td>
<td>Equipamento SC</td>
<td>Tabela 6.1-5</td>
<td>SEMPRE</td>
</tr>
<tr>
<td>Imagem</td>
<td>Imagem geral</td>
<td>Tabela 6.1-6</td>
<td>SEMPRE</td>
</tr>
<tr>
<td></td>
<td>Pixel de imagem</td>
<td>Tabela 6.1-7</td>
<td>SEMPRE</td>
</tr>
<tr>
<td></td>
<td>Imagem SC</td>
<td>Tabela 6.1-8</td>
<td>SEMPRE</td>
</tr>
<tr>
<td></td>
<td>SOP comum</td>
<td>Tabela 6.1-9</td>
<td>SEMPRE</td>
</tr>
</tbody>
</table>

6.1.1.2. Módulo comum

Tabela 6.1-2

Tabela 6.1-2

<table>
<thead>
<tr>
<th>Nome de atributo</th>
<th>Marcador</th>
<th>VR</th>
<th>Valor</th>
<th>Presença de valor</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome do paciente</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Introdução do utilidor ou ficheiro de script. Máximo de 64 carateres</td>
<td>SEMPRE</td>
<td>UTILIZADOR</td>
</tr>
<tr>
<td>ID do paciente</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Introdução do utilidor ou ficheiro de script. Máximo de 64 carateres</td>
<td>SEMPRE</td>
<td>UTILIZADOR</td>
</tr>
<tr>
<td>Data de nascimento do paciente</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Sempre vazio. Comprimento zero</td>
<td>VNSP</td>
<td>UTILIZADOR</td>
</tr>
<tr>
<td>Sexo do paciente</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Introdução do utilidor ou ficheiro de script</td>
<td>SEMPRE</td>
<td>UTILIZADOR</td>
</tr>
</tbody>
</table>

Tabela 6.1-3

Tabela 6.1-3

<table>
<thead>
<tr>
<th>Nome de atributo</th>
<th>Marcador</th>
<th>VR</th>
<th>Valor</th>
<th>Presença de valor</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID de caso de estudo</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site-Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Data do estudo</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Sempre vazio</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Hora do estudo</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Sempre vazio</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Número de identificação</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Sempre vazio</td>
<td>VNSP</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabela 6.1-4
MÓDULO DE SÉRIE GERAL DE INSTÂNCIAS SOP CRIADAS

<table>
<thead>
<tr>
<th>Nome de atributo</th>
<th>Marcador</th>
<th>VR</th>
<th>Valor</th>
<th>Presença de valor</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalidade</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>EUA</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID de instância de série</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Gerado pela aplicação DICOM do Sistema de ultrassons Site-Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. Módulos de imagens de captura secundária

Tabela 6.1-5
MÓDULO DE EQUIPAMENTO SC DE INSTÂNCIAS SOP SC CRIADAS

<table>
<thead>
<tr>
<th>Nome de atributo</th>
<th>Marcador</th>
<th>VR</th>
<th>Valor</th>
<th>Presença de valor</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalidade</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>EUA</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tipo de conversão</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabela 6.1-6
MÓDULO DE IMAGEM GERAL DE INSTÂNCIAS SOP SC CRIADAS

<table>
<thead>
<tr>
<th>Nome de atributo</th>
<th>Marcador</th>
<th>VR</th>
<th>Valor</th>
<th>Presença de valor</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de imagem</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Gerado pela aplicação DICOM do Sistema de ultrassons Site-Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Descrição de derivação</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Gerado pela aplicação DICOM do Sistema de ultrassons Site-Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Compressão de imagem com perdas</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Gerado pela aplicação DICOM do Sistema de ultrassons Site-Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabela 6.1-7
MÓDULO DE PIXELS DE IMAGEM DE INSTÂNCIAS SOP SC CRIADAS

<table>
<thead>
<tr>
<th>Nome de atributo</th>
<th>Marcador</th>
<th>VR</th>
<th>Valor</th>
<th>Presença de valor</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dados de pixel</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Ficheiros de imagens selecionados pelo utilizador (isto é, JPEG)</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Amostras por pixel</td>
<td>(0028,0002)</td>
<td>EUA</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Interpretação fotométrica</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Configuração planar</td>
<td>(0028,0006)</td>
<td>EUA</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Filas</td>
<td>(0028,0010)</td>
<td>EUA</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Colunas</td>
<td>(0028,0011)</td>
<td>EUA</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bits atribuídos</td>
<td>(0028,0100)</td>
<td>EUA</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bits armazenados</td>
<td>(0028,0101)</td>
<td>EUA</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bit elevado</td>
<td>(0028,0102)</td>
<td>EUA</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Representação de pixel</td>
<td>(0028,0103)</td>
<td>EUA</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site~Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabela 6.1-8
MÓDULO DE IMAGEM SC DE INSTÂNCIAS SOP SC CRIADAS

<table>
<thead>
<tr>
<th>Nome de atributo</th>
<th>Marcador</th>
<th>VR</th>
<th>Valor</th>
<th>Presença de valor</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data de captura secundária</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Data de criação de ficheiro de imagem (isto é, JPEG)</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Hora de captura secundária</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Hora de criação de ficheiro de imagem (isto é, JPEG)</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabela 6.1-9
MÓDULO COMUM SOP DE INSTÂNCIAS SOP SC CRIADAS

<table>
<thead>
<tr>
<th>Nome de atributo</th>
<th>Marcador</th>
<th>VR</th>
<th>Valor</th>
<th>Presença de valor</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjunto específico de caracteres</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>"IOS_IR 100" ou "ISO_IR_144"</td>
<td>ANSP</td>
<td>CONFIG</td>
</tr>
<tr>
<td>UID de Classe SOP</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>"1.2.840.10008.5.1.4.1.1.7"</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID de instância de SOP</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site-Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Designador de esquema de codificação</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Gerado pela aplicação DICOM do Sistema de ultra-sons Site-Rite® 8</td>
<td>SEMPRE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Δήλωση συμμόρφωσης DICOM για το DICOM του συστήματος υπερήχων Site~Rite® 8

Όνομα εταιρείας: BARD Access Systems, Inc.
Όνομα προϊόντος: DICOM συστήματος υπερήχων Site~Rite® 8
Έκδοση: 1.0-rev. A-1
Αριθμός εσωτερικού εγγράφου: 1190674
Ημερομηνία: 20 Απριλίου 2015
1. ΕΠΙΣΚΟΠΗΣΗ ΔΗΛΩΣΗΣ ΣΥΜΜΟΡΦΩΣΗΣ

Η λειτουργικότητα DICOM του συστήματος υπερήχων Site-Rite® 8 δέχεται τυπικές εικόνες «ράστερ» JPEG από τη συσκευή υπερήχων και δημιουργεί παρουσίες DICOM εικόνων υπερήχων για τις εικόνες υπερήχων και παρουσίες DICOM δευτερεύουσας λήψης για την υποστήριξη εικόνων κυματομορφών ΗΚΓ, με βάση τα επιλεγμένα στοιχεία ασθενούς. Επιπλέον, επιτρέπει στον χρήστη να εισάγει μη αυτόματα στοιχεία ασθενούς/μελέτης. Υλοποιεί επίσης τις απαραίτητες υπηρεσίες DICOM για τη μεταφορά εικόνων σε μια αρχειοθήκη PACS.

Στον πίνακα 1-1 παρέχεται μια επισκόπηση των υπηρεσιών δικτύου που εκτελούνται από την εφαρμογή DICOM του συστήματος υπερήχων Site-Rite® 8.

<table>
<thead>
<tr>
<th>Πίνακας 1-1</th>
<th>Υπηρεσία δικτύου</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατηγορίες SOP</td>
<td>Χρήστης υπηρεσίας (SCU)</td>
</tr>
<tr>
<td>Μεταφορά</td>
<td></td>
</tr>
<tr>
<td>Εικόνα υπερήχων</td>
<td>Ναι</td>
</tr>
<tr>
<td>Εικόνα δευτερεύουσας λήψης</td>
<td>Ναι</td>
</tr>
</tbody>
</table>
2. ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

1. ΕΠΙΣΚΟΠΗΣΗ ΔΗΛΩΣΗΣ ΣΥΜΜΟΡΦΩΣΗΣ ... 2
2. ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ... 3
3. ΕΙΣΑΓΩΓΗ .. 4
3.1. ΣΤΟΡΙΚΟ ΑΝΑΣΘΡΗΣΕΩΝ .. 4
3.2. ΣΕ ΠΟΙΟΥΣ ΑΠΕΥΘΥΝΕΤΑΙ ... 4
3.3. ΠΑΡΑΤΗΡΗΣΕΙΣ ... 4
3.4. ΟΡΟΙ ΚΑΙ ΟΡΙΣΜΟΙ .. 4
3.5. ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ DICOM ... 7
3.6. ΣΥΝΤΟΜΟΓΡΑΦΙΕΣ ... 8
3.7. ΒΙΒΛΙΟΓΡΑΦΙΑ ... 8
4. ΔΙΚΤΥΩΣΗ ... 8
4.1. ΜΟΝΤΕΛΟ ΥΛΟΠΟΙΗΣΗΣ ... 8
4.1.1. Ροή δεδομένων εφαρμογής ... 8
4.1.2. Λειτουργικός ορισμός των οντοτήτων εφαρμογής .. 9
4.1.2.1. Λειτουργικός ορισμός της οντότητας εφαρμογής αποθήκευσης 9
4.1.2.2. Ακολουθία δραστηριοτήτων στο πραγματικό κόσμο 9
4.2. ΠΡΟΔΙΑΓΡΑΦΕΣ ΟΝΤΟΤΗΤΑΣ ΕΦΑΡΜΟΓΗΣ .. 10
4.2.1. Προδιαγραφές οντότητας εφαρμογής αποθήκευσης 10
4.2.1.1. Κατηγορίες SOP ... 10
4.2.1.2. Πολιτικές συσχέτισης ... 10
4.2.1.2.1. Γενικά .. 10
4.2.1.2.2. Αριθμός συσχετίσεων .. 10
4.2.1.2.3. Ασύγχρονη φύση ... 11
4.2.1.2.4. Πληροφορίες αναγνώρισης υλοποίησης ... 11
4.2.1.3. Πολιτική εκκίνησης συσχέτισης ... 11
4.2.1.3.1. Δραστηριότητα – Αποστολή εικόνων ... 11
4.2.1.3.1.1. Περιγραφή και ακολουθία δραστηριοτήτων 11
4.2.1.3.1.2. Προτεινόμενα περιβάλλοντα παρουσίασης 13
4.2.1.3.1.3. Περιγραφή και ακολουθία δραστηριοτήτων κατηγορίας αποθήκευσης me συγκεκριμένο SOP .. 13
4.3. ΠΡΟΦΙΛ ΕΠΙΚΟΙΝΩΝΙΑΣ .. 15
4.3.1. Στοιβα TCP/IP .. 15
4.3.1.1. Υποστήριξη υποδιαίρεσης TCP/IP ... 15
4.4. ΕΠΕΚΤΑΣΕΙΣ ΕΞΑΤΟΜΙΚΕΥΣΕΙΣ ΕΦΑΡΜΟΓΗΣ ... 15
4.5. ΔΙΑΜΟΡΦΩΣΗ .. 15
4.5.1. Αντιστοίχιση τίτλου οντότητας εφαρμογής .. 15
4.5.1.1. Τίτλοι απομακρυσμένης οντότητας εφαρμογής 15
4.5.1.2. Τίτλοι απομακρυσμένης οντότητας εφαρμογής 15
4.5.1.2.1. Αριθμός συσχετίσεων ... 16
4.5.1.2.1. Μονάδα SCP ... 16
4.6. ΥΠΟΣΤΗΡΙΞΗ ΓΙΑ ΕΚΤΕΤΑΜΕΝΑ ΣΥΝΟΛΑ ΧΑΡΑΚΤΗΡΩΝ 16
5. ΑΝΤΑΛΛΑΞΗ ΜΕΣΩΝ .. 16
6. ΠΑΡΑΡΤΗΜΑΤΑ ... 16
6.1. ΠΕΡΙΕΧΟΜΕΝΑ IOD .. 16
6.1.1. Παρουσίαση IOD που δημιουργούνται ... 16
6.1.1.1. IOD εικόνας δευτερεύουσας λήψης ... 17
6.1.1.2. Κοινή λειτουργική μονάδα ... 17
6.1.1.3. Λειτουργικές μονάδες εικόνας δευτερεύουσας λήψης 18
3. ΕΙΣΑΓΩΓΗ

3.1. ΙΣΤΟΡΙΚΟ ΑΝΑΘΕΩΡΗΣΕΩΝ

<table>
<thead>
<tr>
<th>Έκδοση εγγράφου</th>
<th>Ημερομηνία έκδοσης</th>
<th>Συντάκτης</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 Μαρτίου 2015</td>
<td>Tyler Durfee</td>
<td>Αρχική έκδοση</td>
</tr>
</tbody>
</table>

3.2. ΣΕ ΠΟΙΟΥΣ ΑΠΕΥΘΥΝΕΤΑΙ

Το έγγραφο αυτό έχει συνταχθεί για άτομα που χρειάζονται να κατανοήσουν τον τρόπο με τον οποίο η εφαρμογή DICOM του συστήματος υπερήχων Site~Rite® 8 θα ενσωματωθεί στο υγειονομικό τους ιδρύμα. Στα άτομα αυτά συγκαταλέγονται τόσο οι υπεύθυνοι για τη γενική πολιτική και την αρχιτεκτονική του δικτύου απεικόνισης όσο και οι υπεύθυνοι ενσωμάτωσης, οι οποίοι χρειάζονται να έχουν κατανοήσει λεπτομερώς τις λειτουργίες DICOM του προϊόντος. Το έγγραφο αυτό περιέχει ορισμένους βασικούς ορισμούς του DICOM, έτσι ώστε ο κάθε αναγνώστης να μπορεί να κατανοήσει τον τρόπο με τον οποίο οι πίνακες στο έγγραφο αυτό σχετίζονται με τη λειτουργικότητα του προϊόντος και τον τρόπο με τον οποίο η λειτουργικότητα αυτή ενσωματώνεται με άλλες συσκευές που υποστηρίζουν συμβατές λειτουργίες DICOM.

3.3. ΠΑΡΑΤΗΡΗΣΕΙΣ

Το πεδίο εφαρμογής αυτής της Δήλωσης συμμόρφωσης DICOM είναι να διευκολύνει την ενσωμάτωση ανάμεσα στο DICOM του συστήματος υπερήχων Site~Rite® 8 και άλλα προϊόντα DICOM. Η δήλωση συμμόρφωσης θα πρέπει να διαβάζεται και να κατανοείται σε συνδυασμό με το πρότυπο DICOM. Το DICOM από μόνο του δεν εγγυάται τη διαλειτουργικότητα. Ωστόσο, η δήλωση συμμόρφωσης δεν θα πρέπει να καθορίσει και να εκτελεστούν διαδικασίες δοκιμής για να επικυρωθεί το απαιτούμενο επίπεδο διαλειτουργικότητας με συγκεκριμένο συμβατό εξοπλισμό DICOM, όπως έχει καθιερωθεί από το υγειονομικό ιδρύμα.

Η δήλωση συμμόρφωσης αυτή δεν έχει σκοπό να αντικαταστήσει την επικύρωση με άλλο εξοπλισμό DICOM, για να διασφαλιστεί η σωστή και συμβατή λειτουργικότητα DICOM. Αντιθέτως, η δήλωση συμμόρφωσης δεν θα πρέπει να έχει σκοπό να αντικαταστήσει την επικύρωση με άλλο εξοπλισμό DICOM. Ο χρήστης θα πρέπει να γνωρίζει τα παρακάτω σημαντικά θέματα:

Η σύγκριση διαφορετικών δηλώσεων συμμόρφωσης DICOM είναι απλά το πρώτο βήμα προς την αξιολόγηση της διασυνδεσιμότητας και της διαλειτουργικότητας, ανάμεσα στο προϊόν και άλλες εφαρμογές DICOM.

Θα πρέπει να καθοριστούν και να εκτελεστούν διαδικασίες δοκιμής για να επικυρωθεί το απαιτούμενο επίπεδο διαλειτουργικότητας με συγκεκριμένο συμβατό εξοπλισμό DICOM.

3.4. ΟΡΟΙ ΚΑΙ ΟΡΙΣΜΟΙ

Παρέχονται ανεπίσημοι ορισμοί για τους παρακάτω όρους που χρησιμοποιούνται σε αυτή τη δήλωση συμμόρφωσης. Το πρότυπο DICOM είναι η έγκυρη πηγή για τους επίσημους ορισμούς αυτών των όρων.

Joint Photographic Experts Group (JPEG) – Σύνολο τυποποιημένων τεχνικών συμπίεσης εικόνας, διαθέσιμων για χρήση από εφαρμογές DICOM.
Αντιπροσώπευση τιμής (VR) – Ο τύπος μορφής ενός μεμονωμένου στοιχείου δεδομένων DICOM, όπως κείμενο, ένας ακέραιος αριθμός, το όνομα ενός ατόμου ή ένας κωδικός. Τα αντικείμενα πληροφοριών DICOM μπορούν να μεταδοθούν είτε με ρητή αναγνώριση του τύπου κάθε στοιχείου δεδομένων (Ρητή αντιπροσώπευση τιμής), είτε χωρίς ρητή αναγνώριση (Εμμεσή αντιπροσώπευση τιμής). Με την έμμεση αντιπροσώπευση τιμής, η εφαρμογή-παραλήπτης πρέπει να χρησιμοποιηθεί ένα λεξικό δεδομένων DICOM για να αναζητήσει τη μορφή κάθε στοιχείου δεδομένων.

Διαπραγμάτευση – Πρώτη φάση της καθιέρωσης συσχέτισης, η οποία επιτρέπει στις οντότητες εφαρμογής να συμφωνήσουν για τους τύπους δεδομένων που θα ανταλλαχθούν και τον τρόπο που θα κωδικοποιηθούν αυτά τα δεδομένα.

Ετικέτα – Αναγνωριστικό των 32 bit για ένα στοιχείο δεδομένων, το οποίο αντιπροσωπεύεται από ένα ζεύγος δεκαεξαδικών αριθμών τεσσάρων ψηφίων, την «ομάδα» και το «στοιχείο». Αντιθέτως, η ετικέτα προορίζεται για ένα ιδιωτικό (ειδικό για τον κατασκευαστή) στοιχείο δεδομένων. Παραδείγματα: (0010,0020) [Αναγνωριστικό ασθενούς], (07FE,0010) [Δεδομένα pixel], (0019,0210) [Ιδιωτικό στοιχείο δεδομένων].

Κατηγορία ζεύγους υπηρεσίας/αντικειμένου (SOP) – Οι προδιαγραφές του δικτύου ή της (υπηρεσίας) μεταφοράς πολυμέσων ενός συγκεκριμένου τύπου (αντικειμένου) δεδομένων. Η θεμελιώδης μονάδα των προδιαγραφών διαλειτουργικότητας DICOM.

Λειτουργική μονάδα – Σύνολο χαρακτηριστικών σε έναν Ορισμό αντικειμένου πληροφοριών που σχετίζονται λογικά μεταξύ τους. Παράδειγμα: Η λειτουργική μονάδα ασθενούς περιλαμβάνει το όνομα ασθενούς, το αναγνωριστικό ασθενούς, την ημερομηνία γέννησης ασθενούς και το φύλο ασθενούς.

Μονάδα δεδομένων πρωτοκόλλου (PDU) – Πακέτο (τμήμα) ενός μηνύματος DICOM που στέλνεται διαμέσου του δικτύου. Οι συσκευές πρέπει να καθορίσουν το μέγιστο μέγεθος τακτότητας που μπορούν να λάβουν για μηνύματα DICOM.

Μοναδικό αναγνωριστικό (UID) – Καθολικά μοναδική «διάστικτη δεκαδική» συμβολοσειρά, η οποία αναγνωρίζει ένα συγκεκριμένο αντικείμενο ή μια κατηγορία αντικειμένων. Αναγνωριστικό αντικειμένου ISO-8824. Παραδείγματα: UID παρουσίας μελέτης, UID κατηγορίας SOP, UID παρουσίας SOP.

Οντότητα εφαρμογής (AE) – Τελικό σημείο μιας ανταλλαγής πληροφοριών DICOM, συμπεριλαμβανομένου του δικτύου DICOM ή του λογισμικού διασύνδεσης πολυμέσων, δηλαδή του λογισμικού που στέλνει ή λαμβάνει αντικείμενα πληροφοριών ή μηνύματα DICOM. Μία συσκευή μπορεί να έχει πολλαπλές οντότητες εφαρμογής.

Ορισμός αντικειμένου πληροφοριών (IOD) – Το καθορισμένο σύνολο χαρακτηριστικών από τα οποία αποτελείται ένας τύπος αντικειμένου δεδομένων. Δεν αντιπροσωπεύει μια συγκεκριμένη παρουσία του αντικειμένου δεδομένων, αλλά μια κατηγορία παρόμοιων αντικειμένων δεδομένων που έχουν τις ίδιες ιδιότητες. Τα χαρακτηριστικά μπορούν να καθοριστούν ως Υποχρεωτικά (Τύπος 1), Απαιτούμενα αλλά πιθανώς άγνωστα (Τύπος 2).
Παρουσία για DICOM Site~Rite®

ή Προαιρετικά (Τύπος 3) και ενδέχεται να υπάρχουν προϋποθέσεις που σχετίζονται με τη χρήση ενός χαρακτηριστικού (Τύποι 1C και 2C). Παραδείγματα: IOD εικόνας μαγνητικής τομογραφίας, IOD εικόνας αξονικής τομογραφίας, IOD εργαδείας εκτύπωσης.

Παρουσία ζεύγους υπηρεσίας/αντικειμένου (SOP) – Αντικείμενο (Τύποι 1C και 2C). Παραδείγματα: IOD εικόνας μαγνητικής τομογραφίας, IOD εικόνας αξονικής τομογραφίας, IOD εργαδείας εκτύπωσης.

Παρουσία υπηρεσίας (SCP) – Ρόλος μιας οντότητας εφαρμογής που παρέχει κάποια υπηρεσία δικτύου DICOM. Συνήθως, ένας διακομιστής που εκτελεί λειτουργίες που ζητούνται από μια άλλη οντότητα εφαρμογής (Χρήστης κατηγορίας υπηρεσίας).

Παραδείγματα: Σύστημα επικοινωνίας και αρχειοθέτησης εικόνας (SCP αποθήκευσης εικόνας και SCP ερωτήματος/ανάκτησης εικόνας), σύστημα πληροφοριών ακτινολογίας (SCP λίστας εργασιών μεθόδου).

Περιβάλλον εφαρμογής – Οι προδιαγραφές του τύπου επικοινωνίας που χρησιμοποιείται ανάμεσα σε οντότητες εφαρμογής. Παράδειγμα: Πρωτόκολλο δικτύου DICOM.

Περιβάλλον παρουσίασης – Το σύνολο υπηρεσιών δικτύου DICOM που χρησιμοποιούνται σε μια υπηρεσία, όπως έχει διαπραγματευτεί ανάμεσα στις οντότητες εφαρμογών. Περιλαμβάνει αποθήκευσης και ώστης συντάξεως μεταφοράς.

Προφίλ ασφαλείας – Σύνολο μηχανισμών, όπως η κρυπτογράφηση, η υπολογιστική ασφάλεια ή οι ψηφιακές υπογραφές, οι οποίοι χρησιμοποιούνται από μια οντότητα εφαρμογής για να διασφαλίζει η εμπιστευτικότητα, η ακεραιότητα ή και η διαθέσιμη των δεδομένων DICOM που ανταλλάσσονται.

Προφίλ εφαρμογής πολυμέσων – Οι προδιαγραφές των αντικειμένων υπηρεσίας DICOM και της κωδικοποίησης που ανταλλάσσονται σε αφαιρούμενα μέσα (π.χ. CD).

Σύνταξη μεταφοράς – Η κωδικοποίηση που χρησιμοποιείται για την ανταλλαγή υπηρεσιών DICOM και μηνυμάτων DICOM. Παραδείγματα: Συμπιεσμένες εικόνες JPEG, ρητή αντιπροσώπευση τιμής little endian.

Συσχέτιση – Κανάλι επικοινωνίας τύπου που δημιουργείται ανάμεσα σε οντότητες εφαρμογής.

Τίτλος οντότητας εφαρμογής – Οι προδιαγραφές των αντικειμένων DICOM που χρησιμοποιούνται για την ανταλλαγή υπηρεσιών DICOM και μηνυμάτων DICOM. Παραδείγματα: Αναγνωριστική ασθενούς (0010, 0020), Αύξων αριθμού (0008, 0050).

Χαρακτηριστικό – Μονάδα πληροφοριών σε ορισμό αντικειμένου. Στοιχείο δεδομένων που αναγνωρίζεται από ετικέτα. Οι πληροφορίες ενδέχεται να είναι μια σύνθετη συμπύκνη ή δεδομένων (Ακολουθία), ή οι συσχετιστές αντικειμένων χαριτόνου επιπέδου. Παραδείγματα: Αναγνωστικό ασθενούς (0010, 0020), Αύξων αριθμού (0008, 0050).

Χρήστης κατηγορίας υπηρεσίας (SCU) – Ρόλος μιας οντότητας εφαρμογής που χρησιμοποιεί κάποια υπηρεσία δικτύου DICOM. Συνήθως, ένας πελάτης. Παραδείγματα: Μέθοδος απεικόνισης (SCU αποθήκευσης εικόνας και SCU λίστας εργασιών μεθόδου), ανεξάρτητης απεικόνισης (SCU ερωτήματος/ανάκτησης εικόνας).
3.5. ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ DICOM

Αυτή η ενότητα περιγράφει την ορολογία που χρησιμοποιείται σε αυτή τη δήλωση συμμόρφωσης DICOM για το DICOM του συστήματος υπερήχων Site~Rite®

Δύο οντότητες εφαρμογής (συσκευές) που θέλουν να επικοινωνήσουν μεταξύ τους μέσω ενός δικτύου χρησιμοποιούντας το πρωτόκολλο DICOM, πρέπει πρώτα να συμφωνήσουν για αρκετά πράγματα κατά τη διάρκεια μιας αρχικής «χειραψίας» δικτύου. Μία από τις δύο συσκευές πρέπει να εκκινήσει μια Συσχέτιση (μια σύνδεση με την άλλη συσκευή) και να ρωτήσει αν συγκεκριμένες υπηρεσίες, πληροφορίες και κωδικοποίηση υποστηρίζονται από την άλλη συσκευή (Διαπραγμάτευση).

Το DICOM καθορίζει έναν αριθμό υπηρεσιών δικτύου και τύπων αντικειμένων πληροφοριών, καθένα από τα οποία ονομάζεται Αφηρημένη σύνταξη για τη διαπραγμάτευση. Το DICOM καθορίζει επίσης μια ποικιλία μεθόδων για την κωδικοποίηση δεδομένων, οι οποίες υποδηλώνονται ως Συντάξεις μεταφοράς. Η διαπραγμάτευση επιτρέπει στην οντότητα εφαρμογής που την εκκίνησε να προτείνει συνδυασμούς αφηρημένης σύνταξης και σύνταξης μεταφοράς, για να χρησιμοποιηθούν στη συσχέτιση. Αυτοί οι συνδυασμοί ονομάζονται Περιβάλλοντα παρουσίασης. Η οντότητα εφαρμογής-παραλήπτης αποδέχεται τα περιβάλλοντα παρουσίασης που υποστηρίζει.

Για κάθε περιβάλλον παρουσίασης, η διαπραγμάτευση συσχέτισης επιτρέπει επίσης στις συσκευές να συμφωνήσουν για τους ρόλους – ποια είναι ο Χρήστης κατηγορίας υπηρεσίας (SCU - πελάτης) και ποια είναι ο Πάροχος κατηγορίας υπηρεσίας (SCP - διακομιστής). Κανονικά, η συσκευή που εκκινεί τη σύνδεση είναι ο SCU, δηλαδή το σύστημα πελάτη καλεί τον διακομιστή, αλλά όχι πάντα.

Η διαπραγμάτευση συσχέτισης τελικά ενεργοποιεί την ανταλλαγή του μέγιστου μεγέθους πακέτου δικτύου (PDU), πληροφοριών ασφαλείας και επιλογών υπηρεσίας δικτύου (που ονομάζονται πληροφορίες Εκτεταμένης διαπραγμάτευσης). Οι οντότητες εφαρμογής, αφού διαπραγματεύτηκαν τις παραμέτρους συσχέτισης, μπορούν τώρα να αρχίσουν να ανταλλάσσουν δεδομένα. Οι συνήθεις ανταλλαγές δεδομένων περιλαμβάνουν ερωτήματα για λίστες εργασιών και λίστες αποθηκευμένων εικόνων, μεταφορά αντικειμένων εικόνας και αναλύσεων (δομημένων αναφορών) και αποστολή εικόνων σε εκτυπωτές φιλμ. Κάθε ανταλλάξιμη μονάδα δεδομένων μορφοποιείται από τον αποστολέα σύμφωνα με τον κατάλληλο Ορισμό αντικειμένου πληροφοριών και στέλνεται χρησιμοποιώντας τη διαπραγματευμένη σύνταξη μεταφοράς. Υπάρχει μια προεπιλεγμένη σύνταξη μεταφοράς που πρέπει να την αποδέχονται όλα τα συστήματα, αλλά ενδέχεται να μην είναι το πιο αποδοτικό για ορισμένες περιπτώσεις χρήσης. Κάθε μεταφορά επιβεβαιώνεται ρητά από τον παραλήπτη με μια Κατάσταση απόκρισης που υποδεικνύει την επιτυχία, την αποτυχία ή ότι οι λειτουργίες ερωτήματος ή ανάκτησης βρίσκονται ακόμα σε εξέλιξη.

Δύο οντότητες εφαρμογής μπορούν επίσης να επικοινωνήσουν μεταξύ τους ανταλλάσσοντας μέσα (όπως ένα CD-R). Έπειτα δεν είναι δυνατή η διαπραγμάτευση συσχέτισης, χρησιμοποιούν και οι δύο ένα Προφίλ εφαρμογής πολυμέσων που καθορίζει «προδιαπραγματευμένη» μορφή ανταλλαγής μέσων, αφηρημένη σύνταξη και σύνταξη μεταφοράς.
3.6. ΣΥΝΤΟΜΟΓΡΑΦΙΕΣ

Τα παρακάτω ακρωνύμια και συντομογραφίες χρησιμοποιούνται σε αυτό το έγγραφο.

ΑCR	Αμερικανικό κολέγιο ακτινολογίας
DICOM	Ψηφιακή απεικόνιση και επικοινωνία στην ιατρική
NEMA	Εθνική ένωση κατασκευαστών ηλεκτρικού εξοπλισμού
AE	Οντότητα εφαρμογής
PDU	Μονάδα δεδομένων πρωτοκόλλου
SCP	Πάροχος κατηγορίας υπηρεσίας
SCU	Χρήστης κατηγορίας υπηρεσίας
SOP	Ζεύγος υπηρεσιών-αντικείμενου
TCP/IP	Πρωτόκολλο ελέγχου μετάδοσης/Πρωτόκολλο διαδικτύου
UID	Μοναδικό αναγνωριστικό
LEE	Ρητή αντιπροσώπευση τιμής Little Endian
LEI	Έμμεση αντιπροσώπευση τιμής Little Endian
BEE	Ρητή αντιπροσώπευση τιμής Big Endian

3.7. ΒΙΒΛΙΟΓΡΑΦΙΑ

| DICOM PS3.4 | DICOM PS3.4: Προδιαγραφές κατηγορίας υπηρεσίας, διατίθεται δωρεάν στη διεύθυνση http://medical.nema.org/ |

4. ΔΙΚΤΥΩΣΗ

4.1. ΜΟΝΤΕΛΟ ΥΛΟΠΟΙΗΣΗΣ

4.1.1. Ροή δεδομένων εφαρμογής

Διασύνδεση προτύπου DICOM

Εικόνα 4.1-1
Διάγραμμα ροής δεδομένων εφαρμογής
Η οντότητα εφαρμογής αποθήκευσης της εφαρμογής DICOM του συστήματος υπερήχων Site–Rite® 8 στέλνει εικόνες σε μια απομακρυσμένη οντότητα εφαρμογής. Σχετίζεται με μια τοπική δραστηριότητα «Αποστολή εικόνων» στον πραγματικό κόσμο. Η «Αποστολή εικόνων» εκτελείται μετά από αίτημα του χρήστη για κάθε μελέτη που ολοκληρώνεται ή για συγκεκριμένες εικόνες που επιλέγονται. Όταν ενεργοποιείται από έναν χρήστη εικόνα新手 του παρεχόμενου περιβάλλοντος χρήσης στην εφαρμογή DICOM του συστήματος υπερήχων Site–Rite® 8, κάθε επιπηδημιομένο σύνολο εικόνων μπορεί να αποθηκευτεί αμέσως σε έναν προκαθορισμένο προορισμό.

4.1.2. Λειτουργικός ορισμός των οντοτήτων εφαρμογής

4.1.2.1. Λειτουργικός ορισμός της οντότητας εφαρμογής αποθήκευσης

Ο χρήστης επιλέγει ένα σύνολο εικόνων που είναι αποθηκευμένο τοπικά στην εφαρμογή DICOM του συστήματος υπερήχων Site–Rite® 8 και επιλέγει το κουμπί αποστολής DICOM Transfer (Μεταφορά DICOM) για να ενεργοποιήσει την οντότητα εφαρμογής αποθήκευσης. Στέλνεται ένα αίτημα συσχέτισης στην προκαθορισμένη οντότητα εφαρμογής προορισμού και, μετά την επιτυχημένη διαπραγμάτευση ενός περιβάλλοντος παρουσίασης, αρχίζει η μεταφορά εικόνας. Αν δεν μπορεί να καθιερωθεί η συσχέτιση, ο χρήστης εισήγησε αμέσως με μια εισήγηση σφάλματος και καταγράφονται λεπτομέρειες. Ως προεπιλογή, η οντότητα εφαρμογής αποθήκευσης δεν θα προσπαθήσει να εκκινήσει ακόμα μία συσχέτιση σε περίπτωση συνθήκης σφάλματος.

4.1.2.2. Ακολουθία δραστηριοτήτων στον πραγματικό κόσμο

Εικόνα 4.1-2
ΠΕΡΙΟΡΙΣΜΟΙ ΑΚΟΛΟΥΘΙΑΣ

1. Ο χρήστης εισάγει στοιχεία μελέτης και ασθενούς
2. Ο χρήστης λαμβάνει μια εικόνα
3. Ο χρήστης επιλέγει την εικόνα και τη στέλνει
4. Αποθήκευση ληφθέντων εικόνων

Δήλωση συμμόρφωσης DICOM για το DICOM του συστήματος υπερήχων Site–Rite® 8
Σελίδα 9
Υπό φυσιολογικές συνθήκες ροής εργασιών, ισχύουν οι περιορισμοί ακολουθίας που εμφανίζονται στην Εικόνα 4.1-2:

1. Ο χρήστης εισάγει ή ενημερώνει τα στοιχεία ασθενούς και μελέτης, όπως απαιτείται.
2. Ο χρήστης λαμβάνει μια εικόνα κατά τη διάρκεια της μελέτης.
3. Ο χρήστης επιλέγει εικόνες από την τοπική αποθήκη μέσω του περιβάλλοντος χρήσης για μετάδοση στην εφαρμογή DICOM και επιλέγει το κουμπί TR only από το περιβάλλον χρήσης της εφαρμογής.
4. Η εφαρμογή διαβάζει τα στοιχεία ασθενούς που εισάγονται από τον χρήστη για τη μελέτη, δημιουργεί παρουσίες DICOM και θέτει την επιλεγμένη παρουσία DICOM σε μια απομακρυσμένη οντότητα εφαρμογής.

4.2. ΠΡΟΔΙΑΓΡΑΦΕΣ ΟΝΤΟΤΗΤΑΣ ΕΦΑΡΜΟΓΗΣ

4.2.1. Προδιαγραφές οντότητας εφαρμογής αποθήκευσης

4.2.1.1. Κατηγορίες SOP

Η εφαρμογή DICOM του συστήματος υπερήχων Site−Rite® 8 παρέχει τυπική συμμόρφωση με τις παρακάτω κατηγορίες SOP:

<table>
<thead>
<tr>
<th>Όνομα κατηγορίας SOP</th>
<th>UID κατηγορίας SOP</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αποθήκευση εικόνας υπερήχων</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Ναι</td>
<td>Όχι</td>
</tr>
<tr>
<td>Αποθήκευση εικόνας δευτερεύουσας λήψης</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Ναι</td>
<td>Όχι</td>
</tr>
</tbody>
</table>

4.2.1.2. Πολιτικές συσχέτισης

4.2.1.2.1. Γενικά

Προτείνεται πάντα το όνομα περιβάλλοντος εφαρμογής του προτύπου DICOM για το DICOM 3.0:

| Όνομα περιβάλλοντος εφαρμογής | 1.2.840.10008.3.1.1 |

4.2.1.2.2. Αριθμός συσχετίσεων

Η εφαρμογή DICOM του συστήματος υπερήχων Site−Rite® 8 εκκινεί μία συσχέτιση κάθε φορά για κάθε προορισμό για τον οποίο υποβάλλεται σε επεξεργασία ένα αίτημα μεταφοράς που ενεργοποιήθηκε από τον χρήστη. Μόνο μία εργασία μεταφοράς θα είναι ενεργή κάθε φορά, οι άλλες παραμένουν εκκρεμείς μέχρι να ολοκληρωθεί ή να αποτυχεί το ενεργό αίτημα μεταφοράς.

| Μέγιστος αριθμός ταυτόχρονων συσχετίσεων | 1 |

Δήλωση συμμόρφωσης DICOM για το DICOM του συστήματος υπερήχων Site−Rite® 8

Σελίδα 10
4.2.1.2.3. Ασύγχρονη φύση
Η εφαρμογή DICOM του συστήματος υπερήχων Site-Rite® 8 δεν υποστηρίζει ασύγχρονη επικοινωνία (δηλαδή πολλαπλές εκκρεμείς συναλλαγές σε μία συσχέτιση).

Πίνακας 4.2-4
Ασύγχρονη φύση ως SCU για αποθήκευση
| Μέγιστος αριθμός εκκρεμών ασύγχρονων συναλλαγών | 1 |

4.2.1.2.4. Πληροφορίες αναγνώρισης υλοποίησης
Οι πληροφορίες υλοποίησης για αυτή την οντότητα εφαρμογής είναι οι εξής:

Πίνακας 4.2-5
Κατηγορία υλοποίησης DICOM
| UID κατηγορίας υλοποίησης | 1.2.826.0.1.3680043.2.360.0.3.5.4 |

4.2.1.3. Πολιτική εκκίνησης συσχέτισης

4.2.1.3.1. Δραστηριότητα – Αποστολή εικόνων

4.2.1.3.1.1. Περιγραφή και ακολουθία δραστηριοτήτων
Ο χρήστης μπορεί να επιλέξει εικόνες και να ζητήσει να σταλούν σε έναν προκαθορισμένο προορισμό από το περιβάλλον χρήσης της εφαρμογής. Κάθε αίτημα εκτελείται αμέσως μετά την επιλογή του κουμπιού αποστολής και ο χρήστης ειδοποιείται σχετικά με την κατάσταση της μεταφοράς.

Όταν ενεργοποιείται μια μεταφορά DICOM από τον χρήστη, η οντότητα εφαρμογής αποθήκευσης της εφαρμογής DICOM του συστήματος υπερήχων Site-Rite® 8 προσπαθεί να καθιερώσει μια συσχέτιση με τον προκαθορισμένο διακομιστή προορισμού και εκκινεί ένα αίτημα C-STORE, για να αποθηκεύσει τις επιλεγμένες εικόνες. Όταν αυτή η διαδικασία καθιερώσει με επιτυχία μια συσχέτιση με μια απομακρυσμένη αντίτοιχη εφαρμογής, θα μεταφέρει κάθε επιλεγμένη παρουσία, τη μία μετά την άλλη, μέσω της ανοιχτής συσχέτισης. Η κατάσταση της μεταφοράς αναφέρεται στον χρήστη μέσω του περιβάλλοντος χρήσης. Αν από την εκκίνηση C-STORE από την απομακρυσμένη εφαρμογή περιέχει οποιαδήποτε άλλη κατάσταση από «Επιτυχία» ή «Προειδοποίηση», τότε η συσχέτιση ματαιώνεται και ο χρήστης ειδοποιείται σχετικά με την κατάσταση αποτυχίας. Η διαδικασία μεταφοράς μπορεί να επανακινηθεί από τον χρήστη σημείωση της κατάστασης.

Η οντότητα εφαρμογής αποθήκευσης επιχειρεί να εκκινήσει μια νέα συσχέτιση, προκειμένου να εκδώσει ένα αίτημα C-STORE. Αν η επιλογή του χρήστη περιλαμβάνει πολλαπλές εικόνες, τότε διαπραγματεύεται μια διαφορετική συσχέτιση για κάθε εικόνα, διαδοχικά.
Δήλωση συμμόρφωσης DICOM για το DICOM του συστήματος υπερήχων Site~Rite® 8

Εικόνα 4.2-6
Ακολουθία δραστηριότητας – Αποστολή εικόνων

Η δυνατή ακολουθία αλληλεπίδρασης ανάμεσα στην οντότητα εφαρμογής αποθήκευσης και την απομακρυσμένη οντότητα εφαρμογής (αρχειοθήκη PACS ή πρόγραμμα διαχείρισης εικόνων που υποστηρίζει κατηγορία υπηρεσίας αποθήκευσης ως SCP) εμφανίζεται στην εικόνα 4.2-6:

1. Ο χρήστης επιλέγει μία ή περισσότερες εικόνες για μεταφορά.
2. Για κάθε εικόνα που επιλέγεται, η οντότητα εφαρμογής αποθήκευσης ανοίγει μια συσχέτιση με την απομακρυσμένη οντότητα εφαρμογής.
3. Μία εικόνα που έχει επιλεγεί από τον χρήστη μεταδίδεται στην απομακρυσμένη οντότητα εφαρμογής χρησιμοποιώντας αίτημα C-STORE και η απομακρυσμένη οντότητα εφαρμογής απαντά με απόκριση C-STORE (κατάσταση επιτυχίας).
4. Η οντότητα εφαρμογής αποθήκευσης κλείνει τη συσχέτιση.
5. Η οντότητα εφαρμογής αποθήκευσης επεξεργάζεται διαδικασία την επόμενη εικόνα, ακολουθώντας τα βήματα 2 - 4 παραπάνω, μέχρι να μεταφερθούν όλες οι εικόνες.
4.2.1.3.1.2. Προτεινόμενα περιβάλλοντα παρουσίασης

Η εφαρμογή DICOM του συστήματος υπερήχων Site−Rite® 8 μπορεί να προτείνει οποιοδήποτε περιβάλλον παρουσίασης εμφανίζεται στον παρακάτω πίνακα:

Πίνακας 4.2-7
PROTEINOMENO PERIBALLON PARYOUSIASHS ΓΙΑ DRAΣΤΗΡΙΟΤΗΤΑ APOSTOLHS EIKONON

| Ονομα | UID | Λίστα στοιχείων | Λίστα UID | Ρόλος | Εξωτ. διατρ.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Αποθήκευση εικόνας υπερήχων</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Δείτε τον πίνακα 4.2-8</td>
<td>Δείτε τον πίνακα 4.2-8</td>
<td>SCU</td>
<td>Καμία</td>
</tr>
<tr>
<td>Αποθήκευση εικόνας δευτερεύουσας λήψης</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Δείτε τον πίνακα 4.2-8</td>
<td>Δείτε τον πίνακα 4.2-8</td>
<td>SCU</td>
<td>Καμία</td>
</tr>
</tbody>
</table>

Πίνακας 4.2-8
Προτεινόμενη σύνταξη μεταφοράς

<table>
<thead>
<tr>
<th>Ονομα σύνταξη μεταφοράς</th>
<th>UID σύνταξης μεταφοράς</th>
</tr>
</thead>
<tbody>
<tr>
<td>Έμμεση αντιπροσώπευση τιμής Little Endian (προεπιλογή DICOM)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Ρητή αντιπροσώπευση τιμής Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Ρητή αντιπροσώπευση τιμής Big Endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

Πίνακας 4.2-9
Συμπίεση

<table>
<thead>
<tr>
<th>Ονομα σύνταξης μεταφοράς</th>
<th>UID σύνταξης μεταφοράς</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG Lossy</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG Lossless</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

Κατά τη διαδικασία μεταφοράς μίας εικόνας, η εφαρμογή DICOM του συστήματος υπερήχων Site−Rite® 8 θα συμπεριλάβει την ίδια αφηρημένη σύνταξη (δηλαδή την κατηγορία SOP της παρουσίας εικόνας) σε πολλαπλά περιβάλλοντα παρουσίασης. Κάθε ζεύγος αφηρημένης σύνταξης και σύνταξης μεταφοράς είναι μοναδικό και ένα από τα προτεινόμενα περιβάλλοντα παρουσίασης θα περιέχει την προεπιλεγμένη σύνταξη μεταφοράς DICOM (δηλαδή Έμμεση αντιπροσώπευση τιμής Little Endian) για κάθε αφηρημένη σύνταξη. Ένα περιβάλλον παρουσίασης με κατηγορία SOP επαλήθευσης περιλαμβάνεται πάντα στο αίτημα συσχέτισης από την οντότητα εφαρμογής αποθήκευσης.

4.2.1.3.1.3. Κατηγορίες SOP αποθήκευσης εικόνας για συμμόρφωση με συγκεκριμένο SOP

Όλες οι κατηγορίες SOP αποθήκευσης εικόνας που υποστηρίζονται από την οντότητα εφαρμογής αποθήκευσης έχουν την ίδια συμπεριφορά, εκτός από τα σημεία όπου αναφέρεται κάτι διαφορετικό και περιγράφονται μαζί σε αυτή την ενότητα.

Με βάση την κατηγορία SOP αποθήκευσης της παρουσίας εικόνας που έχει επιλεγεί από τον χρήστη, η οντότητα εφαρμογής αποθήκευσης προτείνει ένα αίτημα συσχέτισης στην απομακρυσμένη οντότητα εφαρμογής με πολλαπλά περιβάλλοντα παρουσίασης, καθένα από τα οποία περιέχει μια διαφορετική σύνταξη μεταφοράς που υποστηρίζεται από την οντότητα εφαρμογής αποθήκευσης. Αν δεν γίνει αποδεκτό κανένα από τα περιβάλλοντα παρουσίασης που αντιστοιχούν στην κατηγορία SOP αποθήκευσης της επιλεγμένης παρουσίας εικόνας που υποβάλλεται σε επεξεργασία, ο χρήστης ειδοποιείται καταλλήλως σχετικά με την κατάσταση αποτυχίας.
Αν γίνουν αποδεκτά από την απομακρυσμένη οντότητα εφαρμογής πολλαπλά περιβάλλοντα παρουσίασης για την ίδια αφηρημένη σύνταξη, η οντότητα εφαρμογής αποθήκευσης, ως προεπιλογή, επιλέγει το περιβάλλον παρουσίασης με βάση την επιλεγμένη εικόνα (δηλαδή υπερήχων ή δευτερεύουσας λήψης) πριν από τη διαδικασία C-STORE.

Η συμπεριφορά της οντότητας εφαρμογής αποθήκευσης όταν διαβάζει ένα σύντακτο κατά τη διάρκεια της αποτυχίας επικοινωνίας συνοψίζεται στον παρακάτω πίνακα:

Πίνακας 4.2-10
Συμπεριφορά χειρισμού κατάστασης απόκρισης C-STORE αποθήκευσης

<table>
<thead>
<tr>
<th>Υπηρεσία Κατάσταση</th>
<th>Περαιτέρω σημασία</th>
<th>Κωδικός σφάλματος</th>
<th>Συμπεριφορά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επιτυχία</td>
<td>Επιτυχία</td>
<td>0000</td>
<td>Το SCP αποθήκευσε με επιτυχία την παρουσία SOP. Αν όλες οι επιλεγμένες παρουσίες SOP σε ένα αίτημα μεταφοράς έχουν κατάσταση επιτυχίας, τότε η μεταφορά θεωρείται επιτυχημένη και ο χρήστης ειδοποιείται.</td>
</tr>
<tr>
<td>Προειδοποίηση</td>
<td>Προειδοποίηση</td>
<td>B000-BFFF</td>
<td>Η μεταφορά εικόνας θεωρείται επιτυχημένη.</td>
</tr>
<tr>
<td>*</td>
<td>Σφάλμα</td>
<td>Οποιοσδήποτε άλλος κωδικός κατάστασης</td>
<td>Το SCP απέτυχε να αποθηκεύσει την παρουσία.</td>
</tr>
</tbody>
</table>

Η συμπεριφορά της οντότητας εφαρμογής αποθήκευσης κατά τη διάρκεια της αποτυχίας επικοινωνίας συνοψίζεται στον παρακάτω πίνακα:

Πίνακας 4.2-11
Συμπεριφορά αποτυχίας επικοινωνίας αποθήκευσης

<table>
<thead>
<tr>
<th>Εξαίρεση</th>
<th>Συμπεριφορά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ληξή χρονικού ορίου</td>
<td>Η συσχέτιση μπορεί να αποθηκευτεί σε μια συσκευή αποθήκευσης USB, επιλέγοντας «shift+ctrl+L».</td>
</tr>
<tr>
<td>Η συσχέτιση μπορεί να αποθηκευτεί σε μια συσκευή αποθήκευσης USB, επιλέγοντας «shift+ctrl+L».</td>
<td>Η συσχέτιση μπορεί να αποθηκευτεί σε μια συσκευή αποθήκευσης USB, επιλέγοντας «shift+ctrl+L».</td>
</tr>
</tbody>
</table>

Μια αποτυχημένη μεταφορά μπορεί να επανακινηθεί μέσω αλληλεπίδρασης με τον χρήστη. Η εφαρμογή δεν προσπαθεί αυτόματα να ξαναστείλει τα αρχεία των οποίων απέτυχε η μεταφορά.

Τα περιεχόμενα των διαφορετικών παρουσιών SOP αποθήκευσης εικόνας που δημιουργούνται από την εφαρμογή DICOM του συστήματος υπερήχων Site~Rite® 8 συμμορφώνονται με τον ορισμό IOD εικόνας PS 3.3 του προτύπου DICOM και περιγράφονται στην ενότητα 6.1.
4.3. ΠΡΟΦΙΛ ΕΠΙΚΟΙΝΩΝΙΑΣ
Η εφαρμογή DICOM του συστήματος υπερήχων Site−Rite® 8 παρέχει υποστήριξη για επικοινωνία δικτύου TCP/IP τύπου DICOM V3.0, όπως ορίζεται στο Μέρος 8 του προτύπου DICOM.

4.3.1. Στοίβα TCP/IP
Η εφαρμογή DICOM του συστήματος υπερήχων Site−Rite® 8 λαμβάνει τη στοίβα TCP/IP του από το σύστημα υπολογιστή στο οποίο εκτελείται.

4.3.1.1. Υποστήριξη φυσικών μέσων
Η εφαρμογή DICOM του συστήματος υπερήχων Site−Rite® 8 δεν επηρεάζεται από το φυσικό μέσο μέσω του οποίου εκτελείται το TCP/IP. Λαμβάνει το μέσο από το σύστημα υπολογιστή στο οποίο εκτελείται.

4.4. ΕΠΕΚΤΑΣΕΙΣ/ΕΞΕΙΔΙΚΕΥΣΕΙΣ/ΕΞΑΤΟΜΙΚΕΥΣΕΙΣ
Δεν εφαρμόζεται.

4.5. ΔΙΑΜΟΡΦΩΣΗ

4.5.1. Αντιστοιχίση τίτλου οντότητας εφαρμογής/διεύθυνσης παρουσίασης
Δεν παρέχονται προεπιλεγμένοι τίτλοι οντότητας εφαρμογής. Πρέπει να διαμορφωθούν οι τίτλοι τοπικής και απομακρυσμένης οντότητας εφαρμογής, μαζί με τις διευθύνσεις κεντρικού υπολογιστή και τους αριθμούς θύρας του απομακρυσμένου διακομιστή. Οι διαμορφωμένες πληροφορίες τίτλου τοπικής οντότητας εφαρμογής και απομακρυσμένης σύνδεσης αποθηκεύονται στο σύστημα για μεταγενέστερη χρήση από την οντότητα εφαρμογής αποθήκευσης.

4.5.1.1. Τίτλοι τοπικής οντότητας εφαρμογής
Μόνο ένας τίτλος τοπικής οντότητας εφαρμογής μπορεί να διαμορφωθεί για την οντότητα εφαρμογής αποθήκευσης. Αυτή η διαμόρφωση μπορεί να τροποποιηθεί από τον χρήστη.

4.5.1.2. Τίτλοι απομακρυσμένης οντότητας εφαρμογής
Η εφαρμογή DICOM του συστήματος υπερήχων Site−Rite® 8 επιτρέπει μόνο μία διαμόρφωση απομακρυσμένης οντότητας εφαρμογής. Ο τίτλος απομακρυσμένης οντότητας εφαρμογής, η διεύθυνση κεντρικού υπολογιστή (δηλαδή διεύθυνση IP), και ο αριθμός θύρας του απομακρυσμένου διακομιστή πρέπει να διαμορφωθούν κατά τη διάρκεια της εγκατάστασης. Ο χρήστης μπορεί να τροποποιήσει τη διαμόρφωση απομακρυσμένης οντότητας εφαρμογής, διεύθυνσης κεντρικού υπολογιστή και αριθμού θύρας οποιαδήποτε στιγμή.
4.5.1.2.1. Απομακρυσμένο SCP

Ο παρακάτω πίνακας περιγράφει τις επιλογές διαμόρφωσης για το απομακρυσμένο SCP:

<table>
<thead>
<tr>
<th>Ρυθμίσεις SCP</th>
<th>Προεπιλογή</th>
<th>Διαμορφώσιμη</th>
<th>Επιλογές διαμόρφωσης</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τίτλος οντότητας εφαρμογής αποθήκευσης</td>
<td>Όχι</td>
<td>Ναι</td>
<td>Δ/Ε</td>
</tr>
<tr>
<td>Τίτλος απομακρυσμένης οντότητας εφαρμογής</td>
<td>Όχι</td>
<td>Ναι</td>
<td>Δ/Ε</td>
</tr>
<tr>
<td>Απομακρυσμένη διεύθυνση IP</td>
<td>Όχι</td>
<td>Ναι</td>
<td>Δ/Ε</td>
</tr>
<tr>
<td>Απομακρυσμένη θύρα TCP</td>
<td>Όχι</td>
<td>Ναι</td>
<td>Δ/Ε</td>
</tr>
<tr>
<td>Σύνταξη μεταφοράς</td>
<td>Όχι</td>
<td>Ναι</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Συμπίεση</td>
<td>Όχι</td>
<td>Ναι</td>
<td>Lossless, Lossy, Καμία</td>
</tr>
</tbody>
</table>

4.6. ΥΠΟΣΤΗΡΙΞΗ ΓΙΑ ΕΚΤΕΤΑΜΕΝΑ ΣΥΝΟΛΑ ΧΑΡΑΚΤΗΡΩΝ

Η εφαρμογή DICOM του συστήματος υπερήχων Site~Rite® 8 υποστηρίζει τα παρακάτω σύνολα χαρακτηρών:
- ISO-IR 6 (προεπιλογή): Βασικό σύνολο G0
- ISO-IR 100: Λατινικό αλφάβητο αρ. 1

Επιπλέον, η εφαρμογή DICOM του συστήματος υπερήχων Site~Rite® 8 υποστηρίζει τη χρήση του παρακάτω συνόλου χαρακτηρών στις εφαρμόζοντας αποθήκευσης τιμής, όπως όνομα ασθενούς, περιγραφή μελέτης και περιγραφή σειράς.
- ISO_IR 144 (συμπληρωματικό σύνολο λατινικού/κυριλλικού αλφαβήτου ISO 8859-5:1988)

5. ΑΝΤΑΛΛΑΓΗ ΜΕΣΩΝ

Η εφαρμογή DICOM του συστήματος υπερήχων Site~Rite® 8 δεν υποστηρίζει αποθήκευση σε μέσα.

6. ΠΑΡΑΡΤΗΜΑΤΑ

6.1. ΠΕΡΙΕΧΟΜΕΝΑ IOD

6.1.1. Παρουσίες SOP που δημιουργούνται

Ο πίνακας 6.1-1 καθορίζει τα χαρακτηριστικά μιας εικόνας υπερήχων/δευτερεύουσας λήψης που μεταδίδεται από την οντότητα εφαρμογής αποθήκευσης της εφαρμογής DICOM του συστήματος υπερήχων Site~Rite® 8.

Οι παρακάτω πίνακες χρησιμοποιούν η περιγραφή σειράς. Οι συντομογραφίες που χρησιμοποιούνται στη στήλη «Υπάρχει …» είναι οι εξής:
- ΔΥΠΤ: Δεν υπάρχει πάντα τιμή (το χαρακτηριστικό που στέλνεται έχει μηδενικό μήκος αν δεν υπάρχει τιμή)
- ΔΥΠΧ: Δεν υπάρχει πάντα χαρακτηριστικό
- ΠΑΝΤΑ: Υπάρχει πάντα
- ΚΕΝΟ: Το χαρακτηριστικό στέλνεται χωρίς τιμή
Οι συντομογραφίες που χρησιμοποιούνται στη στήλη «Προέλευση» είναι οι εξής:

- **ΧΡΗΣΤΗΣ**: Η προέλευση της τιμής χαρακτηριστικού είναι εισαγωγή από τον χρήστη.
- **ΑΥΤΟΜΑΤΑ**: Η τιμή χαρακτηριστικού δημιουργείται αυτόματα.
- **ΔΙΑΜΟΡΦΩΣΗ**: Η προέλευση της τιμής χαρακτηριστικού είναι μια διαμορφώσιμη παράμετρος.

6.1.1.1. IOD εικόνας δευτερεύουσας λήψης

Πίνακας 6.1-1

<table>
<thead>
<tr>
<th>ΙΕ</th>
<th>Λειτουργική μονάδα</th>
<th>Αναφορά</th>
<th>Υπάρχει λειτουργική μονάδα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ασθενής</td>
<td>Όνομα ασθενούς</td>
<td>Πίνακας 6.1-2</td>
<td>ΠΑΝΤΑ</td>
</tr>
<tr>
<td>Μελέτη</td>
<td>Γενική μελέτη</td>
<td>Πίνακας 6.1-3</td>
<td>ΠΑΝΤΑ</td>
</tr>
<tr>
<td>Σειρά</td>
<td>Γενική σειρά</td>
<td>Πίνακας 6.1-4</td>
<td>ΠΑΝΤΑ</td>
</tr>
<tr>
<td>Εξοπλισμός</td>
<td>Εξοπλισμός SC</td>
<td>Πίνακας 6.1-5</td>
<td>ΠΑΝΤΑ</td>
</tr>
<tr>
<td>Εικόνα</td>
<td>Γενική εικόνα</td>
<td>Πίνακας 6.1-6</td>
<td>ΠΑΝΤΑ</td>
</tr>
<tr>
<td></td>
<td>Ριςει εικόνας</td>
<td>Πίνακας 6.1-7</td>
<td>ΠΑΝΤΑ</td>
</tr>
<tr>
<td></td>
<td>Εικόνα SC</td>
<td>Πίνακας 6.1-8</td>
<td>ΠΑΝΤΑ</td>
</tr>
<tr>
<td></td>
<td>Κοινό SOP</td>
<td>Πίνακας 6.1-9</td>
<td>ΠΑΝΤΑ</td>
</tr>
</tbody>
</table>

6.1.1.2. Κοινή λειτουργική μονάδα

Πίνακας 6.1-2

<table>
<thead>
<tr>
<th>Ονομα χαρακτηριστικού</th>
<th>Ετικέτα</th>
<th>Αντιπροσώπευση τιμής</th>
<th>Τιμή</th>
<th>Υπάρχει τιμή</th>
<th>Προέλευση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όνομα ασθενούς</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Εισαγωγή από τον χρήστη ή αρχείο scrip. Μέγιστο μήκος 64 χαρακτήρες</td>
<td>ΠΑΝΤΑ</td>
<td>ΧΡΗΣΤΗΣ</td>
</tr>
<tr>
<td>Αναγνωριστικό ασθενούς</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Εισαγωγή από τον χρήστη ή αρχείο scrip. Μέγιστο μήκος 64 χαρακτήρες</td>
<td>ΠΑΝΤΑ</td>
<td>ΧΡΗΣΤΗΣ</td>
</tr>
<tr>
<td>Ημερομηνία γέννησης ασθενούς</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Πάντα κενή. Μηδενικό μήκος</td>
<td>ΔΥΠΤ</td>
<td>ΧΡΗΣΤΗΣ</td>
</tr>
<tr>
<td>Φύλο ασθενούς</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Εισαγωγή από τον χρήστη ή αρχείο scrip</td>
<td>ΠΑΝΤΑ</td>
<td>ΧΡΗΣΤΗΣ</td>
</tr>
</tbody>
</table>
Πίνακας 6.1-3
ΛΕΙΤΟΥΡΓΙΚΗ ΜΟΝΑΔΑ ΓΕΝΙΚΗΣ ΜΕΛΕΤΗΣ ΓΙΑ ΠΑΡΟΥΣΙΕΣ SOP ΠΟΥ ΔΗΜΙΟΥΡΓΟΥΝΤΑΙ

<table>
<thead>
<tr>
<th>Όνομα χαρακτηριστικού</th>
<th>Ετικέτα</th>
<th>Αντιπροσώπευση τιμής</th>
<th>Τιμή</th>
<th>Υπάρχει τιμή</th>
<th>Προέλευση</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID παρουσίας μελέτης</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site-Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Ημερομηνία μελέτης</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Πάντα κενή</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Όρα μελέτης</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Πάντα κενή</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Αύξων αριθμός</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>ΔΥΠΤ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας 6.1-4
ΛΕΙΤΟΥΡΓΙΚΗ ΜΟΝΑΔΑ ΓΕΝΙΚΗΣ ΣΕΙΡΑΣ ΓΙΑ ΠΑΡΟΥΣΙΕΣ SOP ΠΟΥ ΔΗΜΙΟΥΡΓΟΥΝΤΑΙ

<table>
<thead>
<tr>
<th>Όνομα χαρακτηριστικού</th>
<th>Ετικέτα</th>
<th>Αντιπροσώπευση τιμής</th>
<th>Τιμή</th>
<th>Υπάρχει τιμή</th>
<th>Προέλευση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέθοδος</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>UID παρουσίας σειράς</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site-Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
</tbody>
</table>

6.1.1.3. Λειτουργικές μονάδες εικόνας δευτερεύουσας λήψης

Πίνακας 6.1-5
ΛΕΙΤΟΥΡΓΙΚΗ ΜΟΝΑΔΑ ΕΞΟΠΛΙΣΜΟΥ SC ΓΙΑ ΠΑΡΟΥΣΙΕΣ SOP SC ΠΟΥ ΔΗΜΙΟΥΡΓΟΥΝΤΑΙ

<table>
<thead>
<tr>
<th>Όνομα χαρακτηριστικού</th>
<th>Ετικέτα</th>
<th>Αντιπροσώπευση τιμής</th>
<th>Τιμή</th>
<th>Υπάρχει τιμή</th>
<th>Προέλευση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέθοδος</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Τύπος μετατροπής</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
</tbody>
</table>

Πίνακας 6.1-6
ΛΕΙΤΟΥΡΓΙΚΗ ΜΟΝΑΔΑ ΓΕΝΙΚΗΣ ΕΙΚΟΝΑΣ ΓΙΑ ΠΑΡΟΥΣΙΕΣ SOP SC ΠΟΥ ΔΗΜΙΟΥΡΓΟΥΝΤΑΙ

<table>
<thead>
<tr>
<th>Όνομα χαρακτηριστικού</th>
<th>Ετικέτα</th>
<th>Αντιπροσώπευση τιμής</th>
<th>Τιμή</th>
<th>Υπάρχει τιμή</th>
<th>Προέλευση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τύπος εικόνας</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site-Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Περιγραφή προέλευσης</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site-Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Συμπίεση εικόνας Lossy</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site-Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Όνομα χαρακτηριστικού</td>
<td>Ετικέτα</td>
<td>Αντιπροσώπευση τιμής</td>
<td>Τιμή</td>
<td>Υπάρχει τιμή</td>
<td>Προέλευση</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>--</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Δεδομένα pixel</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Αρχεία εικόνας που επιλέγονται από τον χρήστη (δηλαδή JPEG)</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Δείγματα ανά pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Φωτομετρική ερμηνεία</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Επίπεδη διαμόρφωση</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Γραμμές</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Στήλες</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Βιτ που εκχωρήθηκαν</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Βιτ που αποθηκεύτηκαν</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Υψηλό bit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Αντιπροσώπευση pixel</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
</tbody>
</table>
Πίνακας 6.1-8

<table>
<thead>
<tr>
<th>Όνομα χαρακτηριστικού</th>
<th>Ετικέτα</th>
<th>Αντιπροσώπευση τιμής</th>
<th>Τιμή</th>
<th>Υπάρχει τιμή</th>
<th>Προέλευση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ημερομηνία δευτερεύοντας λήψης</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Ημερομηνία δημιουργίας αρχείου εικόνας (δηλαδή JPEG)</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Ωρα δευτερεύοντας λήψης</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Ωρα δημιουργίας αρχείου εικόνας (δηλαδή JPEG)</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
</tbody>
</table>

Πίνακας 6.1-9

<table>
<thead>
<tr>
<th>Όνομα χαρακτηριστικού</th>
<th>Ετικέτα</th>
<th>Αντιπροσώπευση τιμής</th>
<th>Τιμή</th>
<th>Υπάρχει τιμή</th>
<th>Προέλευση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Συγκεκριμένο σύνολο χαρακτήρων</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>«IOS_IR 100» ή «ISO_IR_144»</td>
<td>ΔΥΠΧ</td>
<td>ΔΙΑΜΟΡΦΩΣΗ</td>
</tr>
<tr>
<td>UID κατηγορίας SOP</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>«1.2.840.10008.5.1.4.1.1.7»</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>UID παρουσίας SOP</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
<tr>
<td>Προσδιοριστικό συστήματος κωδικοποίησης</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Δημιουργείται από το DICOM του συστήματος υπερήχων Site~Rite® 8</td>
<td>ΠΑΝΤΑ</td>
<td>ΑΥΤΟΜΑΤΑ</td>
</tr>
</tbody>
</table>
DICOM Overensstemmelseserklæring for Site~Rite® 8 Ultralydssystem DICOM

Virksomhedens navn: BARD Access Systems, Inc.

Produktnavn: Site~Rite® 8 Ultralydssystem DICOM

Version: 1.0-rev. A-1

Intern dokumentnummer: 1190674

Dato: 20. april 2015
1. OVERSIGT OVER OVERENSSTEMMELSESERKLÆRING

Tabel 1-1 giver en oversigt over netværkstjenester, der udføres af Site~Rite® 8 Ultralydssystem DICOM-applikationen.

<table>
<thead>
<tr>
<th>SOP-klasser</th>
<th>Bruger af tjenesten (SCU)</th>
<th>Udbyder af tjenesten (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overførsel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultralydsbillede</td>
<td>Ja</td>
<td>Nej</td>
</tr>
<tr>
<td>Billede fra sekundær optagelse</td>
<td>Ja</td>
<td>Nej</td>
</tr>
</tbody>
</table>
2. INDHOLDSFORTEGNELSE

1. OVERSIGT OVER OVERENSTEMMELSESELRKLÆRING.............................. 2
2. INDHOLDSFORTEGNELSE.. 3
3. INTRODUKTION.. 4
 3.1. REVISIONSHISTORIK... 4
 3.2. MÅLGRUPPE ... 4
 3.3. BEMÆRKNINGER ... 4
 3.4. ORD OG DEFINITIONER ... 4
 3.5. GRUNDLÆGENDE OPLYSNINGER OM DICOM-KOMMUNIKATION 6
 3.6. FORKORTELSER .. 7
 3.7. REFERENCER ... 7
4. NETVÆRK... 8
 4.1. IMPLEMENTERINGSMODEL .. 8
 4.1.1. Applikationens dataflow ... 8
 4.1.2. Funktionel definition af AE'er .. 8
 4.1.2.1. Funktionel definition af lagringsapplikationsenhed........ 8
 4.1.2.2. Sekvensering af real world-aktiviteter 9
 4.2. AE-SPECIFIKATIONER .. 9
 4.2.1. Specifikation for lagringsapplikationsenhed 9
 4.2.1.1. SOP-klasser.. 9
 4.2.1.2. Tilknytningspolitischer ... 10
 4.2.1.2.1. Generelt .. 10
 4.2.1.2.2. Antal tilknytninger .. 10
 4.2.1.2.3. Asynkron karakter .. 10
 4.2.1.2.4. Implementeringsidentifikationsoplysninger 10
 4.2.1.3. Politik for tilknytningsinitiering 10
 4.2.1.3.1. Aktivitet – Send billeder 10
 4.2.1.3.1.1. Beskrivelse af og rækkefølge for aktiviteter 10
 4.2.1.3.1.2. Foreslåede præsentationskontekster 12
 4.2.1.3.1.3. Lagrings-SOP-klasser for SOP-specifikke overensstemmelser billede 12
 4.3. KOMMUNIKATIONSPROFILER ... 13
 4.3.1. TCP/IP-stak .. 13
 4.3.1.1. Understøttelse af fysiske medier 13
 4.4. UDVIDELSER/SPECIALICERINGER/PRIVATISERINGER 13
 4.5. KONFIGURATION .. 14
 4.5.1. Tilknytning af AE-titel/præsentationsadresse 14
 4.5.1.1. Titler for lokale AE'er .. 14
 4.5.1.2. Titler for eksterne AE'er ... 14
 4.5.1.2.1. Ekstern SCP ... 14
 4.6. UNDERSTØTTELSE AF UDVIDEDE TEGNSÆT 14
5. MEDIEUDVEKSLING .. 14
6. BILAG ... 15
 6.1. IOD-INDHOLD ... 15
 6.1.1. Oprettede SOP-forekomster ... 15
 6.1.1.1. IOD for billede fra sekundær optagelse 15
 6.1.1.2. Fælles modul ... 15
 6.1.1.3. Moduler for billede fra sekundær optagelse 16
3. INTRODUKTION

3.1. REVISIONSHISTORIK

<table>
<thead>
<tr>
<th>Dokumentversion</th>
<th>Udgivelsesdato</th>
<th>Forfatter</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24. marts 2015</td>
<td>Tyler Durfee</td>
<td>Oprindelig version</td>
</tr>
</tbody>
</table>

3.2. MÅLGRUPPE

Dette dokument er skrevet til personer, der skal forstå, hvordan Site~Rite® 8 Ultralydssystem DICOM-applikationen integreres på deres sundhedsinstitution. Det omfatter både dem, der er ansvarlige for den generelle netværksoplægning og -arkitektur for billeddannelse, og integratorer, der skal have en indgående forståelse af produktet DICOM-funktioner. Dette dokument indeholder nogle grundlæggende DICOM-definitioner, så alle læsere kan forstå, hvordan produktet implementerer DICOM-funktioner. Integratorer forventes dog at have indgående kendskab til DICOM-terminologien, hvordan tabellerne i dette dokument relaterer sig til produktets funktionalitet, og hvordan den funktionalitet integreres med andre enheder, der understøtter kompatible DICOM-funktioner.

3.3. BEMÆRKNINGER

Formålet med denne DICOM Overensstemmelseserklæring er at lette integrationen mellem Site~Rite® 8 Ultralydssystem DICOM og andre DICOM-produkter. Overensstemmelseserklæringen skal læses og forstås i sammenhæng med DICOM-standarden. DICOM garanterer ikke i sig selv interoperabilitet. Overensstemmelseserklæringen gør det dog lettere at foretage en første niveau-sammenligning af interoperabilitet mellem forskellige applikationer, der understøtter kompatible DICOM-funktionalitet.

Denne overensstemmelseserklæring er ikke beregnet til at erstatte validering med andet DICOM-udstyr for at sikre korrekt udveksling af ønskede informationer. Faktisk bør brugeren være opmærksom på følgende vigtige områder:

- Sammenligning af forskellige overensstemmelseserklæringer er bare det første skridt på vejen til interkonnektivitet og interoperabilitet mellem produktet og andet DICOM-kompatibelt udstyr.
- Der skal defineres og udføres testprocedurer med henblik på at validere det påkrevende niveau af interoperabilitet med specifikt kompatibelt DICOM-udstyr i henhold til sundhedsinstitutionens etablerede protokol.

3.4. ORD OG DEFINITIONER

Der er angivet uformelle definitioner for følgende termer, der bruges i denne overensstemmelseserklæring. DICOM-standarden er den officielle kilde til formelle definitioner af disse termer.

Applikationsenhed (AE) – slutpunkt for en DICOM-informationsudveksling, herunder DICOM-netværket eller mediograafenes software, dvs. den software, der sender eller modtager DICOM-informationsobjekter eller -meddelelser. En enkelt enhed kan have flere applikationsenheder.

Applikationsenhedstitel – det eksternt anvendte navn på en applikationsenhed, bruges til at identificere en DICOM-aplikation over for andre DICOM-applikationer på netværket.

Forhandling – første fase af etablering af tilknytning, hvor applikationsenheder kan blive enige om, hvilke typer data der skal udveksles, og hvordan dataene skal kodes.

IOD (Information Object Definition) – det angivne sæt attributter, der udgør en type dataobjekt; repræsenterer ikke en specifik forekomst af dataobjektet, men en klasse af tilsvarende dataobjekter med samme egenskaber. Attributterne kan angives som obligatoriske (type 1), påkrævede men muligvis ukendte (type 2) eller valgfri (type 3), og der kan være betingelser knyttet til brugen af en attribut (type 1C og 2C). Eksempler: MR-billed-IOD, CT-billed-IOD, udskriftsjob-IOD.

JPEG (Joint Photographic Experts Group) – et sæt standardiserede billedkomprimeringsteknikker, der kan bruges af DICOM-applikationer.

Kode – en 32-bit identifikator for et dataelement, der repræsenteres som et par firecifrede hexadeccimale tal, "gruppen" og "elementet". Hvis "gruppe"-tallet er ulige, hører koden til et privat (producentenspecifik) dataelement. Eksempler: (0010,0020) [patient-ID], (07FE,0010) [pixeldata], (0019,0210) [privat dataelement].

Medieapplikationsprofil – angivelse af DICOM-informationsobjekter og kodning, der udveksles på flybare medier (f.eks. cd'er).

PDU (Protocol Data Unit) – en pakke (del) af en DICOM-meddelelse, der sendes over netværket. Enhederne skal angive den maksimale pakkestørrelse, de kan modtage for DICOM-meddelelser.

Præsentationskontekst – det sæt DICOM-netværkstjenester, der bruges over en tilknytning i henhold til forhandlingen mellem applikationsenhederne; omfatter abstrakte syntakser og overførselsyntaxer.
SCP (Service Class Provider) – rolle til en applikationsenhed, der leverer en DICOM-netværksstjeneste; typisk en server, der udfører handlinger, som en anden applikationsenhed (SCU) har anmodet om. Eksempler: PACS (SCP for billedlagring, og SCP for billedførespørgsel/hentning), røntgeninformationssystem (SCP for modalitesopgaveliste).

SCU (Service Class User) – rolle til en applikationsenhed, der bruger en DICOM-netværksstjeneste, typisk en klient. Eksempler: billeddannelsesmodalitet (SCU for billedlagring og SCU for modalitesopgaveliste), arbejdsstation til billeddannelse (SCU for billedførespørgsel/hentning).

Sikkerhedsprofil – et sæt mekanismer, f.eks. kryptering, brugergodkendelser og digitale signaturer, som en applikationsenhed bruger til at sikre fortrolighed, integritet og/eller tilgængelighed for udvekslede DICOM-data.

SOP-forekomst (Service/Object Pair) – informationsobjekt; en specifik forekomst af information, der udveksles i en SOP-klasse. Eksempler: et specifikt ultralydsbillede.

SOP-klasse (Service/Object Pair) – angivelse af netværkstypen eller medieoverførslen (tjeneste) for en bestemt type data (objekt); den grundlæggende enhed i DICOM-interoperabelitetsangivelse. Eksempler: Lagringstjeneste til ultralydsbilleder, komprimeringssyntaks, overførselsyntaks eller patientoplysninger.

Tilknytning – en netværkskommunikationskanal mellem applikationsenheder.

3.5. GRUNDLÆGGENDE OPLYSNINGER OM DICOM-KOMMUNIKATION

Dette afsnit beskriver terminologien i denne overensstemmelseserklæring for lægmænd. De vigtigste termer i overensstemmelseserklæringen er fremhævet med kursiv nedenfor. Dette afsnit kan ikke erstatte uddannelse i DICOM, og det indeholder mange forenklede definitioner af DICOM-termer.

To applikationsenheder, der vil kommunicere med hinanden over et netværk ved hjælp af en DICOM-protokol, skal først blive enige om nogle ting. Det sker under et indledende netværkshåndshake. En af de to enheder skal indlede en tilknytning (en forbindelse til den anden enhed) og spørge om bestemte tjenester, informationer og kodning understøttes af den anden enhed (forhandling).

For hver præsentationskontekst giver tilknytningsforhandlingen også mulighed for, at enhederne bliver enige om roller – hvilken der skal være SCU (Service Class User – klient), og hvilken der skal være SCP (Service Class Provider – server). Normalt er den enhed, der indleder forbindelsen, SCU, dvs. clientsystemet ringer op til serveren, men ikke altid.
Til sidst giver tilknytningsforhandlingen mulighed for udveksling af maksimal størrelse af netværkspakken (PDU), oplysninger om sikkerhed og netværkstjenesteindstillinger (oplysninger for udvidet forhandling).

To applikationsenheder kan også kommunikere med hinanden ved at udveksle medier (f.eks. en cd-r). Da der ikke er mulighed for tilknytningsforhandling, bruger de begge en medieapplikationsprofil, der angiver udvekslingsformatet "forudforhandlet", abstrakt syntaks og overførselssyntaks.

3.6. FORKORTELSER

Følgende akronymer og forkortelser bruges i dette dokument:

<table>
<thead>
<tr>
<th>Akronym</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>AE</td>
<td>Applikationsenhed</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User</td>
</tr>
<tr>
<td>SOP</td>
<td>Service-Object Pair</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>UID</td>
<td>Entydigt iD</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian Eksplicit</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian Eksplicit</td>
</tr>
</tbody>
</table>

3.7. REFERENCER

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: Tjenesteklassespecificationer, fås gratis på http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. NETVÆRK

4.1. IMPLEMENTERINGSMODEL

4.1.1. Applikationens dataflow

Diagram over applikationens dataflow

Lagringsapplikationsenheden for Site~Rite® 8 Ultralydssystem DICOM-applikationen sender billeder til en ekstern AE. Den er knyttet til den lokale real world-aktivitet "Send billeder". "Send billeder" udføres på anmodning af brugeren for hver undersøgelse, der afsluttes, eller for udvalgte billeder. Hvert markeret sæt billeder kan straks gemmes på en forudkonfigureret destination, når det er blevet aktiveret af en bruger via brugergrænsefladen i Site~Rite® 8 Ultralydssystem DICOM-applikationen.

4.1.2. Funktionel definition af AE'er

4.1.2.1. Funktionel definition af lagringsapplikationsenhed

Brugeren vælger et sæt billeder, der er gemt lokalt, i Site~Rite® 8 Ultralydssystem DICOM-applikationen og vælger knappen DICOM-overførsel (Send) for at aktivere lagrings-AE'en. Der sendes en tilknytningsanmodning til den forudkonfigurerede destinations-AE, og når der er forhandlet en præsentationskontekst, starter billedoverførslen. Hvis tilknytningen ikke kan etableres, modtager brugeren en fejlmeddelelse med det samme, og oplysningerne logges. Som standard forsøger lagrings-AE'en ikke at starte en ny tilknytning, hvis der opstår en fejltillstand.
4.1.2.2. Sekvensering af real world-aktiviteter

4.1.2.2. Sekvensering af real world-aktiviteter

1. Brugeren indtaster patient- og undersøgelsesoplysninger
2. Brugeren tager et billede
3. Brugeren vælger billedet og sender det
4. Gem optagne billeder

Figur 4.1-2
SEKVENSERINGSBEGRÆNSNINGER

Under den normale arbejdsgang gælder de sekvenseringsbegrænsninger, der er vist i figur 4.1-2:

1. Brugeren angiver eller opdaterer patient- og undersøgelsesoplysninger, når det er relevant.
2. Brugeren tager et billede i løbet af undersøgelsen.
4. Applikationen læser de patientoplysninger, brugeren har indtastet for undersøgelsen, genererer DICOM-forekomster og sender den valgte DICOM-forekomst til en ekstern AE.

4.2. AE-SPECIFIKATIONER

4.2.1. Specifikation for lagringsapplikationsenhed

4.2.1.1. SOP-klasser

Site-Rite® 8 Ultralydssystem DICOM-applikationen giver standardoverensstemmelse med følgende SOP-klasser:

<table>
<thead>
<tr>
<th>SOP-klassennavn</th>
<th>SOP-klasse-UID</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagring af ultralydsbilleder</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Ja</td>
<td>Nej</td>
</tr>
<tr>
<td>Lagring af billede fra sekundær optagelse</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Ja</td>
<td>Nej</td>
</tr>
</tbody>
</table>
4.2.1.2. Tilknytningspolitikker

4.2.1.2.1. Generelt
Navnet på DICOM-standardapplikationens kontekst for DICOM 3.0 foreslås altid:

<table>
<thead>
<tr>
<th>Tabel 4.2-2</th>
<th>DICOM-applikationskontekst for AE-lagring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apifikationskontekstnavn</td>
</tr>
</tbody>
</table>

4.2.1.2.2. Antal tilknytninger
Site-Rite® 8 Ultralydssystem DICOM-applikationen starter en tilknytning på et bestemt tidspunkt for hver destination, hvortil en overførselsanmodning, som brugeren aktiverer, behandles. Kun ét overførselsjob er aktivt ad gangen. Andre job venter, indtil den aktive overførselsanmodning er gennemført eller mislykkedes.

<table>
<thead>
<tr>
<th>Tabel 4.2-3</th>
<th>Antal tilknytninger påbegyndt for AE-lagring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maks. antal samtidige tilknytninger</td>
</tr>
</tbody>
</table>

4.2.1.2.3. Asynkron karakter
Site-Rite® 8 Ultralydssystem DICOM-applikationen understøtter ikke asynkron kommunikation (dvs. flere udestående transaktioner i en enkelt tilknytning).

<table>
<thead>
<tr>
<th>Tabel 4.2-4</th>
<th>Asynkron karakter som SCU til lagring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maks. antal udestående asynkrone transaktioner</td>
</tr>
</tbody>
</table>

4.2.1.2.4. Implementeringsidentifikationsoplysninger
Implementeringsoplysningerne for denne applikationsenhed er:

<table>
<thead>
<tr>
<th>Tabel 4.2-5</th>
<th>DICOM-implementeringsklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implementeringsklasse-UId</td>
</tr>
</tbody>
</table>

4.2.1.3. Politik for tilknytningsinitiering

4.2.1.3.1. Aktivitet – Send billeder

4.2.1.3.1.1. Beskrivelse af og rækkefølge for aktiviteter
Brugeren kan vælge billeder og anmode om at få dem sendt til en forudkonfigureret destination fra applikationens brugergrænseflade. Hver anmodning udføres med det samme, når knappen Send vælges, og brugeren får besked om overførlens status.

Lagrings-AE’en forsøger at starte en ny tilknytning for at sende en C-STORE-anmodning. Hvis brugerens valg indeholder flere billeder, forhandles der en separat tilknytning for hvert billede i sekventiel rækkefølge.

![Diagram](Figur 4.2-6)

Figur 4.2-6

Sekvensering af aktivitet – Send billeder

Den eventuelle sekvensering af interaktion mellem lagrings-AE’en og en ekstern AE (lagringstjenesteklasse, der understøtter PACS-arkiv eller billedadministration, som SCP) er vist i figur 4.2-6:

1. Brugeren vælger et eller flere billeder til overførsel.
2. For hvert bilde, der vælges, åbner lagrings-AE’en en tilknytning med den eksterne AE.
4. Lagrings-AE’en lukker tilknytningen.
5. Lagrings-AE’en behandler sekventielt det næste bilde i henhold til trin 2-4 ovenfor, indtil alle billeder er overført.
4.2.1.3.1.2. Foreslåede præsentationskontekster

Site-Rite® 8 Ultralydssystem DICOM-applikationen kan foreslå enhver af præsentationskonteksterne i følgende tabel:

<table>
<thead>
<tr>
<th>Tabel 4.2-7</th>
<th>FORESLÅET PRÆSENTATIONSKONTEKST FOR AKTIVITETEN SEND BILLEDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstrakt syntaks</td>
<td>Overførselsynaktas</td>
</tr>
<tr>
<td>Navn</td>
<td>UID</td>
</tr>
<tr>
<td>Lagring af ultralydsbilleder</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
</tr>
<tr>
<td>Lagring af billeder fra sekundær optagelse</td>
<td>1.2.840.10008.5.1.4.1.1.1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 4.2-8</th>
<th>Foreslået overførselsynaktas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navn på overførselsynaktas</td>
<td>UID for overførselsynaktas</td>
</tr>
<tr>
<td>Implicit VR Little Endian (DICOM-standard)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Eksplicit VR Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Eksplicit VR Big Endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 4.2-9</th>
<th>Kompression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navn på overførselsynaktas</td>
<td>UID for overførselsynaktas</td>
</tr>
<tr>
<td>JPEG med tab</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG uden tab</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

Når Site-Rite® 8 Ultralydssystem DICOM-applikationen overfører ét billede, medtager den den samme abstrakte syntaks (dvs. SOP-klassen for billedforekomsten) i flere præsentationskontekster. Hver enkelt par af abstrakt syntaks og overførselsynaktas er unikt, og en af de foreslåede præsentationskontekster indeholder DICOM-standardoverførselsynaktasen (dvs. implicit VR Little Endian) pr. abstrakt syntaks. En præsentationskontekst med Kontrol-SOP-klasser medtages altid i en tilknytningsoverførsel fra en lagrings-AE.

4.2.1.3.1.3. Lagrings-SOP-klasser for SOP-specifikke overensstemmelsesbilleder

Alle billedlagraings-SOP-klasser, der understøttes af lagrings-AE’en, har samme adfærd, medmindre andet er angivet, og beskrives samlet i dette afsnit.

Hvis flere præsentationskontekster accepteres af den eksterne AE for den samme abstrakte syntaks, vælger lagrings-AE’en som standard præsentationskonteksten baseret på det valgte billede (dvs. ultralyd eller sekundær optagelse) før C_STORE-processen.
Laerings-AE’ens adfærd, ved forekomst af en statuskode i C-STORE-svaret, er opsummeret i følgende tabel:

Tabel 4.2-10
Adfærd til håndtering af C-STORE-svarstatus for lagring

<table>
<thead>
<tr>
<th>Tjeneste Status</th>
<th>Betydning</th>
<th>Fejlkode</th>
<th>Adfærd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udført</td>
<td>Udført</td>
<td>0000</td>
<td>SCP har gemt SOP-forekomsten. Hvis alle valgte SOP-forekomster i en overførselsanmodning har statussen Udført, betragte overførslen som udført, og brugeren får besked.</td>
</tr>
<tr>
<td>Advarsel</td>
<td>Advarsel</td>
<td>B000-BFFF</td>
<td>Billedoverførslen betragtes som udført.</td>
</tr>
<tr>
<td>*</td>
<td>Fejl</td>
<td>Enhver anden statuskode</td>
<td>SCP’en kunne ikke gemme forekomsten.</td>
</tr>
</tbody>
</table>

Lagring-AE’ens adfærd ved kommunikationsfejl, er opsummeret i følgende tabel:

Tabel 4.2-11
Adfærd ved kommunikationsfejl under lagring

<table>
<thead>
<tr>
<th>Undtagelse</th>
<th>Adfærd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>Tilknytningen afbrydes ved hjælp af A-ABORT og overførselsjobbet betragtes som mislykket. Årsagen rapporteres i logfilen.</td>
</tr>
<tr>
<td>Tilknytning afbrudt af SCP eller netværkslag</td>
<td>Overførselsjobbet betragtes som mislykket. Årsagen rapporteres til brugeren via logfilen.</td>
</tr>
</tbody>
</table>

Bemærk: Logfilen kan gemmes på en USB-lagerenhed ved at vælge "Skift+Ctrl+L".

En mislykket overførsel kan genstartes med brugerinteraktion. Applikationen prøver ikke automatisk at gensende de filer, der ikke blev overført.

Indholdet af forskellige billedlagrings-SOP-forekomster, der er oprettet af Site~Rite® 8 Ultralydssystem DICOM, opfylder PS 3.3 billed-IOD-definitionen i DICOM-standarden og er beskrevet i afsnit 6.1.

4.3. KOMMUNIKATIONSPROFILER
Site~Rite® 8 Ultralydssystem DICOM-applikationen giver understøttelse af DICOM V3.0 TCP/IP-netværkskommunikation i del 8 af DICOM-standarden.

4.3.1. TCP/IP-stak
Site~Rite® 8 Ultralydssystem DICOM-applikationen arver sin TCP/IP-stak fra det computersystem, den køres på.

4.3.1.1. Understøttelse af fysiske medier
Site~Rite® 8 Ultralydssystem DICOM-applikationen påvirkes ikke af det fysiske medie, som TCP/IP køres på. Den arver mediet fra det computersystem, den køres på.

4.4. UDVIDELSER/SPECIALICERINGER/PRIVATISERINGER
Ikke relevant.
4.5. KONFIGURATION

4.5.1. Tilknytning af AE-titel/præsentationsadresse

4.5.1.1. Titler for lokale AE'-er

Der er kun én lokal AE-titel, der kan konfigureres for lagrings-AE'en. Denne konfiguration kan ændres af brugeren.

4.5.1.2. Titler for eksterne AE'er

4.5.1.2.1. Ekstern SCP

Følgende tabel beskriver konfigurationsindstillingerne for den eksterne SCP:

<table>
<thead>
<tr>
<th>SCP-indstilling</th>
<th>Standard</th>
<th>Kan konfigureres</th>
<th>Konfigurationsindstilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel for lagrings-</td>
<td>Nej</td>
<td>Ja</td>
<td>Ikke relevant</td>
</tr>
<tr>
<td>applikationsenhed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titel for ekstern</td>
<td>Nej</td>
<td>Ja</td>
<td>Ikke relevant</td>
</tr>
<tr>
<td>applikationsenhed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekstern IP-adresse</td>
<td>Nej</td>
<td>Ja</td>
<td>Ikke relevant</td>
</tr>
<tr>
<td>Ekstern TCP-port</td>
<td>Nej</td>
<td>Ja</td>
<td>Ikke relevant</td>
</tr>
<tr>
<td>Overførselssyntaks</td>
<td>Nej</td>
<td>Ja</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Kompression</td>
<td>Nej</td>
<td>Ja</td>
<td>Uden tab, med tab, ingen</td>
</tr>
</tbody>
</table>

4.6. UNDERSTØTTELSE AF UDVIDEDE TEGNSÆT

Site~Rite® 8 Ultralydssystem DICOM-applikationen understøtter følgende tegnsæt:

- ISO-IR 6 (standard): Grundlæggende G0-sæt
- ISO-IR 100: Latinsk alfabet nr. 1

Desuden understøtter Site~Rite® 8 Ultralydssystem DICOM-applikationen brug af følgende tegnrepertoire i de relevante værdirepræsentationer, f.eks. patientens navn, beskrivelse af undersøgelsen og beskrivelse af serien.

- ISO_IR 144 (ISO 8859-5:1988 supplerende sæt med latinsk/kyrillisk alfabet)

5. MEDIEUDVEKSLING

Site~Rite® 8 Ultralydssystem DICOM-applikationen understøtter ikke medielagring.
6. BILAG

6.1. IOD-INDHOLD

6.1.1. Oprettede SOP-forekomster

Tabel 6.1-1 viser attributterne for et ultralyds-/sekundær optagelse-billede, der er sendt fra Site-Rite® 8 Ultryldssystem DICOM-applikationens lagrings-AE.

I de følgende tabeller benyttes en række forkortelser. Forkortelserne i kolonnen "Tilstedeværelse af…” er:

- VIATS: Værdi Ikke Altid Til Sede (attributten sendte en længde på nul, hvis der ikke er nogen værdi til stede)
- AIATS: Attribut Ikke Altid Til Stede
- ALTID: Altid til stede
- TOM: Attributten sendes uden en værdi

Forkortelserne i kolonnen "Kilde":

- BRUGER: Attributværdikilden er fra brugerens input
- AUTO: Attributværdien genereres automatisk
- KONFIG: Attributværdikilden er en parameter, der kan konfigureres

6.1.1.1. IOD for billede fra sekundær optagelse

<table>
<thead>
<tr>
<th>Forekomst</th>
<th>Modul</th>
<th>Reference</th>
<th>Tilstedeværelse af modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Patientnavn</td>
<td>Tabel 6.1-2</td>
<td>ALTID</td>
</tr>
<tr>
<td>Undersøgelse</td>
<td>Generel undersøgelse</td>
<td>Tabel 6.1-3</td>
<td>ALTID</td>
</tr>
<tr>
<td>Serie</td>
<td>Generel serie</td>
<td>Tabel 6.1-4</td>
<td>ALTID</td>
</tr>
<tr>
<td>Udstyr</td>
<td>SC-udstyr</td>
<td>Tabel 6.1-5</td>
<td>ALTID</td>
</tr>
<tr>
<td>Billede</td>
<td>Generelt billede</td>
<td>Tabel 6.1-6</td>
<td>ALTID</td>
</tr>
<tr>
<td></td>
<td>Billedpixel</td>
<td>Tabel 6.1-7</td>
<td>ALTID</td>
</tr>
<tr>
<td></td>
<td>SC-billede</td>
<td>Tabel 6.1-8</td>
<td>ALTID</td>
</tr>
<tr>
<td></td>
<td>SOP fælles</td>
<td>Tabel 6.1-9</td>
<td>ALTID</td>
</tr>
</tbody>
</table>

6.1.1.2. Fælles modul

<table>
<thead>
<tr>
<th>Attributnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Værdi</th>
<th>Tilstedeværelse af værdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientens navn</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Brugerinput eller scriptfil. Maks. 64 tegn</td>
<td>ALTID</td>
<td>BRUGER</td>
</tr>
<tr>
<td>Patient-ID</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Brugerinput eller scriptfil. Maks. 64 tegn</td>
<td>ALTID</td>
<td>BRUGER</td>
</tr>
<tr>
<td>Patientens fødselsdato</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Altid tom. Nul i længde</td>
<td>VIATS</td>
<td>BRUGER</td>
</tr>
<tr>
<td>Patientens køn</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Brugerinput eller scriptfil</td>
<td>ALTID</td>
<td>BRUGER</td>
</tr>
</tbody>
</table>

DICOM Overensstemmelseserklæring for Site-Rite® 8 Ultryldssystem DICOM
Tabel 6.1-3
GENEREL UNDERSØGLESE-MODUL FOR OPRETTEDE SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Værdi</th>
<th>Tilstedeværelse af værdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID for undersøgelsesforekomst</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Genereret af Site-Rite® 8 Ultralydssystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Undersøgelsesdato</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Altid tom</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Undersøgelsestid</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Altid tom</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Accessionsnummer</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Altid tom</td>
<td>VIATS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabel 6.1-4
GENEREL SERIE-MODUL FOR OPRETTEDE SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Værdi</th>
<th>Tilstedeværelse af værdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalitet</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID for serieforekomst</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Genereret af Site-Rite® 8 Ultralydssystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. Moduler for billede fra sekundær optagelse

Tabel 6.1-5
SC-UDSTYRSMODUL FOR OPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Værdi</th>
<th>Tilstedeværelse af værdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalitet</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Konverteringstype</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabel 6.1-6
GENERELT BILLEDE-MODUL FOR OPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Værdi</th>
<th>Tilstedeværelse af værdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billedtype</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Genereret af Site-Rite® 8 Ultralydssystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Beskrivelse af afledning</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Genereret af Site-Rite® 8 Ultralydssystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Komprimering af billede med tab</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Genereret af Site-Rite® 8 Ultralydssystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabel 6.1-7

BILLEDPIXELMODUL FOR OPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Værdi</th>
<th>Tilstedeværelse af værdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixeldata</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Brugervalgte billedfiler (dvs. JPEG)</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Billedpunkter pr. pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fotometrisk fortolkning</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Plankonfiguration</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Rækker</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kolonner</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitAllokeret</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitGemt</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>HøjBit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>PixelRepræsentation</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Genereret af Site~Rite® 8 Ultradysystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabel 6.1-8

SC-BILLEDMODUL FOR OPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Værdi</th>
<th>Tilstedeværelse af værdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dato for sekundær optagelse</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Oprettesesdato for billedfil (dvs. JPEG)</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tidspunkt for sekundær optagelse</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Oprettesestidspunkt for billedfil (dvs. JPEG)</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabel 6.1-9
SOP-BILLEDMODUL FOR OPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Værdi</th>
<th>Tilstedeværelse af værdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifikt tegnsæt</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>"IOS_IR 100" eller "ISO_IR_144"</td>
<td>AIATS</td>
<td>KONFIG</td>
</tr>
<tr>
<td>SOP-kasse-UID</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>"1.2.840.10008.5.1.4.1.1.7"</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID for SOP-forekomst</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Genereret af Site~Rite® 8 Ultralydssystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kodeskemadesignator</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Genereret af Site~Rite® 8 Ultralydssystem DICOM</td>
<td>ALTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Deklaration om DICOM-överensstämmelse för
Site~Rite® 8 ultraljudssystem DICOM

Företagsnamn: BARD Access Systems, Inc.

Produktnamn: Site~Rite® 8 ultraljudssystem DICOM

Version: 1.0-rev. A-1

Intern dokumentnummer: 1190674

Datum: 20 april 2015
1. ÖVERSIKT FÖR DEKLARATION OM ÖVERENSSTÄMMELSE

Tabell 1-1 ger en översikt av de nätverkstjänster som utförs av DICOM-programmet Site-Rite® 8 ultraljudssystem.

<table>
<thead>
<tr>
<th>SOP-klasser</th>
<th>Användare av tjänst (SCU)</th>
<th>Tjänsteleverantör (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Överföring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultraljudsbild</td>
<td>Ja</td>
<td>Nej</td>
</tr>
<tr>
<td>SC-bild (Secondary Capture)</td>
<td>Ja</td>
<td>Nej</td>
</tr>
</tbody>
</table>
2. INNEHÅLL

1. ÖVERSIKT FÖR DEKLARATION OM ÖVERENSSTÄMMELSE ... 2
2. INNEHÅLL .. 3
3. INLEDNING ... 4
 3.1. REVIDERINGSHISTORIK .. 4
 3.2. MÅLGRUPP ... 4
 3.3. ANMÄRKNINGAR ... 4
 3.4. TERMER OCH DEFINITIONER ... 4
 3.5. GRUNDLÄGGANDE DICOM-KOMMUNIKATION 6
 3.6. FÖRKORTNINGAR ... 7
 3.7. REFERENSER .. 7
4. NÄTVERK .. 8
 4.1. IMPLEMENTERINGSMODELL ... 8
 4.1.1. Dataflöde för tillämpning .. 8
 4.1.2. Funktionell definition av tillämpningsenheter (AE) 8
 4.1.2.1. Funktionell definition av lagringstillämpningsenhet 8
 4.1.2.2. Aktivitetsekkevns ut användarperspektiv ... 9
 4.2. SPECIFIKATIONER FÖR TILLÄMNPINGSENHET (AE) 9
 4.2.1. Specifikation för lagringstillämpningsenhet .. 9
 4.2.1.1. SOP-klasser ... 9
 4.2.1.2. Uppkopplingspolicy (Association) .. 10
 4.2.1.2.1. Allmänt ... 10
 4.2.1.2.2. Antal uppkopplingar ... 10
 4.2.1.2.3. Asynkron överföring ... 10
 4.2.1.2.4. Implementering av ID-information .. 10
 4.2.1.3. Policy för uppkopplingsinitiering ... 10
 4.2.1.3.1. Aktivitet – skicka bilder .. 10
 4.2.1.3.1.1. Beskrivning och aktivitetsekkevns .. 10
 4.2.1.3.1.2. Föreslagna presenttionskontexter ... 12
 4.2.1.3.1.3. SOP-specifik överensstämmelse för SOP-klasserna för bildlagring 12
 4.3. KOMMUNIKATIONSPROFILER .. 13
 4.3.1. TCP/IP-stack ... 13
 4.3.1.1. Stöd för fysiska medier .. 13
 4.4. UTÖKNINGAR/SPECIALISERINGAR/PRIVATISERINGAR 13
 4.5. KONFIGURATION ... 14
 4.5.1. Namn på tillämpningsenhet/mappning för presentationsadresser 14
 4.5.1.1. Lokala tillämpningsenhetsnamn ... 14
 4.5.1.2. Externa tillämpningsenhetsnamn ... 14
 4.5.1.2.1. Extern tjänsteleverantör (SCP) ... 14
 4.6. STÖD FÖR UTÖKADE TECKENTABELLAR ... 14
5. MEDIAUTBYTE .. 15
 6. BILAGOR .. 15
 6.1. IOD-INNEHÅLL .. 15
 6.1.1. Skapade SOP-instanser .. 15
 6.1.1.1. IOD för Secondary Capture-bild ... 15
 6.1.1.2. Allmän modul .. 15
 6.1.1.3. Bildmoduler för Secondary Capture .. 16

Deklaration om DICOM-överensstämmelse för Site-Rite® 8 ultraljudssystem DICOM
3. INLEDNING

3.1. REVIDERINGSHISTORIK

<table>
<thead>
<tr>
<th>Dokumentversion</th>
<th>Utgivningsdatum</th>
<th>Författare</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 mars 2015</td>
<td>Tyler Durfee</td>
<td>Första version</td>
</tr>
</tbody>
</table>

3.2. MÅLGRUPP

3.3. ANMÄRKNINGAR

Denna deklaration om överensstämmelse är inte avsedd att ersätta validering med annan DICOM-utrustning för att säkerställa korrekt utbyte av önskad information. Användaren måste vara medveten om följande viktiga punkter:

– Jämförelsen av olika deklarationer om överensstämmande är bara det första steget för att utvärdera interoperabilitet mellan produkten och annan DICOM-utrustning.
– Testprocedurer bör definieras och genomföras för att validera den nivå av interoperabilitet som krävs med specifik kompatibel DICOM-utrustning enligt hälsovårdsnätverksamheten.

3.4. TERMER OCH DEFINITIONER

Informella definitioner tillhandahålls för följande termer som används i denna deklaration om överensstämmande. DICOM-standarden är den gällande källan för formella definitioner av dessa termer.

Application Context (tillämpningskontext) – specifikationen av den typ av kommunikation som används mellan olika AE. Exempel: DICOM-nätverksprotokoll.
Svenska

Application Entity Title (AE-namn) – det externt kända namnet för en AE som används av DICOM-tillämpningar för att identifiera andra DICOM-tillämpningar på nätverket.

Association (uppkoppling/anslutning) – en kommunikationskanal på nätverket mellan olika AE.

Information Object Definition (IOD) (informationsobjektsdefinition) – den specifika uppsättningen attribut som utgör en typ av dataobjekt. Representerar inte en instans av dataobjektet, utan en klass av liknande dataobjekt som har samma egenskaper. Attributen kan anges som obligatoriska (Typ 1), nödvändiga men möjliga okända (Typ 2) eller valfria (Typ 3) och det kan finnas viktor kopplade till användningen av ett attribut (typerna 1C och 2C). Exempel: IOD för MR-bild, IOD för DT-bild, IOD för utskriftsjobb.

Media Application Profile (media-applikationsprofil) – specificenationen av DICOM-informationsobjekt och kodning som utväxlas på borttagbara media (t.ex. CD).

Negotiation (förhandling) – den första fasen vid upprättande av uppkoppling (Association) som gör att AE kan komma överens om de datatyper som ska utväxlas och hur data ska kodas.

Presentation Context (presentationskontext) – den uppsättning DICOM-nätverkstjänster som används över en uppkoppling (Association), enligt det som förhandlats fram mellan AE. Inkluderar abstrakt syntax och överföringssyntax.

Protocol Data Unit (PDU) (protokolldataenhet) – ett paket (en del) av ett DICOM-meddelande som skickas över nätverket. Enheter måste ange den största paketstorlek som de kan ta emot för DICOM-meddelanden.

Security Profile (säkerhetsprofil) – en uppsättning mekanismer, som kryptering, kontroll av användares behörighet eller digitala signaturen som används av en AE för att säkerställa konfidentialitet, integritet och/eller tillgänglighet för utväxlad DICOM-data.

Tag (tagg) – ett 32-bitar ID för ett dataelement, representerat som ett par fyrsiffriga hexadecimala siffror, ”gruppen” och ”elementet”. Om ”grupp”-numret är udda är taggen för ett privat (tillverkarspecifikt) dataelement. Exempel: (0010,0020) [patient-ID], (07FE,0010) [pixeldata], (0019,0210) [privat dataelement].

3.5. GRUNDLÄGGANDE DICOM-KOMMUNIKATION

Detta avsnitt beskriver terminologi som används i denna deklaration om överensstämmelse så att personer som inte är experter inom området ska förstå. Nyckeltermerna i deklarationen om överensstämmelse är markerade i kursivt nedan. Detta avsnitt ersätter inte utbildning om DICOM och gör många förenklingar av DICOM-terminernas betydelse.

Två tillämpningsenheter (AE) (apparater) som vill kommunicera med varandra över ett nätverk med DICOM-protokollet måste först komma överens om flera saker under en inledande ”handskakning” över nätverket. En av de två enheterna måste initiera en uppkoppling (Association) (en anslutning till den andra enheten) och fråga om specifika tjänster, specifik information och kodning stöds av den andra enheten (förhandling).

För varje presentationskontext tillåter uppkopplingsförhandlingen även att enheterna kommer överens om roller – vilken som är användare av tjänst (Service Class User) (SCU – klient) och vilken som är tjänsteleverantör (Service Class Provider) (SCP – server).
Normalt är den enhet som initierade anslutningen SCU, dvs. klientsystemet kontaktar servern, men det är inte alltid så. Uppkopplingsförhandlingen möjliggör också utbyte av maximal storlek på nätverkspaket (PDU), säkerhetsinformation och alternativ för nätverksjänster (kallad utökad förhandlingsinformation).

Två tillämpningsenheter kan även kommunicera med varandra genom att utbyta media (som en CD-R). Eftersom ingen uppkopplingsförhandling är möjlig, använder båda en media-applikationsprofil som specificerar "i förväg förhandlade" mediaformat för överföring, abstrakt syntax och överföringssyntax.

3.6. FÖRKORTNINGAR

Följande akronymer och förkortningar används i detta dokument:

<table>
<thead>
<tr>
<th>Förkortning</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>AE</td>
<td>Application Entity (tillämpningsenhet)</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit (protokolldataenhhet)</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider (tjänsteleverantör)</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User (användare av tjänst)</td>
</tr>
<tr>
<td>SOP</td>
<td>Service-Object Pair (tjänst-/objektpar)</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>UID</td>
<td>Unikt ID</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian explicit</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian explicit</td>
</tr>
</tbody>
</table>

3.7. REFERENSER

<table>
<thead>
<tr>
<th>Standard</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: Tjänsteklassspecifikationer, tillgängliga utan kostnad på http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. NÄTVERK

4.1. IMPLEMENTERINGSMODELL

4.1.1. Dataflöde för tillämpning

4.1.2. Funktionell definition av tillämpningsenheter (AE)

4.1.2.1. Funktionell definition av lagringstillämpningsenhet

Användaren markerar en uppsättning bilder som är lokalt lagrade i DICOM-applikationen i Site-Rite® 8 ultraljudssystem och väljer knappen DICOM-överföring (Skicka) för att aktivera lagringstillämpningsenheten. En uppkopplingsförrågan skickas till den fördefinierade tillämpningsenheten och efter förhandling av presentationskontext startas bildöverföringen. Om uppkopplingen inte kan upprättas notifieras användaren direkt med ett felmeddelande och information om felet loggas. Som standard försöker lagringstillämpningsenheten inte genomföra en ny uppkoppling vid fel.
4.1.2.2. Aktivitetssekvens ut användarperspektiv

I ett normalt arbetsflöde gäller de sekvensbegränsningar som visas i Figur 4.1-2:

1. Användaren anger eller uppdaterar vid behov patient- och undersökningsinformation.
2. Användaren tar en bild under en undersökning.
3. Användaren väljer bilder från den lokala lagringsenheten via användargränssnittet för överföring till den externa tillämpningsenheten och väljer knappen "DICOM-overföring" i användargränssnittet.
4. Tillämpningen läser patientinformationen som angivits av användaren för undersökningen, genererar DICOM-instanser och skickar vald DICOM-instans till en extern tillämpningsenhet.

4.2. SPECIFIKATIONER FÖR TILLÄMPNINGSENHET (AE)

4.2.1. Specifikation för lagringstillämpningsenhet

4.2.1.1. SOP-klasser

DICOM-applikationen i Site−Rite® 8 ultraljudssystem överensstämmer med standard för följande SOP-klasser:

<table>
<thead>
<tr>
<th>SOP-klassnamn</th>
<th>UID för SOP-klass</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultraljudsbildlagring</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Ja</td>
<td>Nej</td>
</tr>
<tr>
<td>Lagring av SC-bilder (Secondary Capture)</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Ja</td>
<td>Nej</td>
</tr>
</tbody>
</table>
4.2.1.2. Uppkopplingspolicy (Association)

4.2.1.2.1. Allmänt

DICOM standardnamn för tillämpningskontext för DICOM 3.0 föreslås alltid:

<table>
<thead>
<tr>
<th>Tabell 4.2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM tillämpningskontext för tillämpningsenhetslagring</td>
</tr>
<tr>
<td>Tillämpningskontextnamn</td>
</tr>
</tbody>
</table>

4.2.1.2.2. Antal uppkopplingar

DICOM-applikationen i Site~Rite® 8 ultraljudssystem initierar en uppkoppling åt gången för varje destination för vilken en överföringsbegäran som aktiverats av användaren pågår. Endast ett överföringsjobb åt gången kommer att vara aktivt, andra förblir väntande tills den aktiva överföringsbegäran är slutförd eller misslyckas.

<table>
<thead>
<tr>
<th>Tabell 4.2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal uppkopplingar som initieras för tillämpningsenhetslagring</td>
</tr>
<tr>
<td>Maximalt antal samtidiga uppkopplingar</td>
</tr>
</tbody>
</table>

4.2.1.2.3. Asynkron överföring

DICOM-applikationen i Site~Rite® 8 ultraljudssystem har inte stöd för asynkron kommunikation (dvs. flera utestående transaktioner över en uppkoppling).

<table>
<thead>
<tr>
<th>Tabell 4.2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynkron överföring som användare av tjänst (SCU) för lagring</td>
</tr>
<tr>
<td>Maximalt antal utestående asynkrona transaktioner</td>
</tr>
</tbody>
</table>

4.2.1.2.4. Implementering av ID-information

Implementeringsinformationen för denna tillämpningsenhet är:

<table>
<thead>
<tr>
<th>Tabell 4.2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM implementeringsklass</td>
</tr>
<tr>
<td>UID för implementeringsklass</td>
</tr>
</tbody>
</table>

4.2.1.3. Policy för uppkopplingsinitiering

4.2.1.3.1. Aktivitet – skicka bilder

4.2.1.3.1.1. Beskrivning och aktivitetssekvens

En användare kan välja bilder och begära att de skickas till en fördefinierad destination från programmets användargränssnitt. Varje begäran utförs direkt när knappen skicka väljs och användare informeras om överföringens status.

Överföringsprocessen kan när som helst återstartas av användaren.

Lagringstillämpningsenheten försöker initiera en ny uppkoppling för att skicka en C-STORE-begäran. Om användaren valt flera bilder utförs en separat uppkoppling för varje bild i ordningsföljd.

Figur 4.2-6
Aktivitetssekvens – skicka bilder

Den möjliga sekvensen för interaktion mellan lagringstillämpningsenheten och en extern tillämpningsenhet (PACS-arkiv eller bildhanterare med stöd för lagringstjänstklass som tjänsteleverantör (SCP)) illustreras i figur 4.2-6:

1. Användaren väljer en eller flera bilder för överföring.
2. För varje vald bild öppnar lagringstillämpningsenheten en uppkoppling till den externa tillämpningsenheten.
4. Lagringstillämpningsenheten stänger uppkopplingen.
5. Lagringstillämpningsenheten bearbetar nästa bild i ordningen enligt steg 2–4 ovan tills alla bilder överförts.
4.2.1.3.1.2. Föreslagna presentationskontexter

DICOM-applikationen i Site-Rite® 8 ultraljudssystem kan föreslå alla de presentationskontexter som visas i följande tabell:

<table>
<thead>
<tr>
<th>Presentationskontexttabell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namn</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Ultraljudsbildlagring</td>
</tr>
<tr>
<td>Lagring av SC-bilder (Secondary Capture)</td>
</tr>
</tbody>
</table>

Tabell 4.2-8

<table>
<thead>
<tr>
<th>Namn på överföringssyntax</th>
<th>UID för överföringssyntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit VR Little Endian (DICOM-standard)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Explicit VR Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Explicit VR Big Endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

Tabell 4.2-9

<table>
<thead>
<tr>
<th>Namn på överföringssyntax</th>
<th>UID för överföringssyntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG med kvalitetsförlust</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG utan kvalitetsförlust</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

Vid överföring av en bild kommer DICOM-applikationen i Site-Rite® 8 ultraljudssystem att inkludera samma abstrakta syntax (dvs. SOP-klass för bildinstansen) i flera presentationskontexter. Varje par med abstrakt syntax och överföringssyntax är unikt och en av de föreslagna presentationskontexterna kommer att innehålla standardöverföringssyntax för DICOM (dvs. Implicit VR Little Endian) per abstrakt syntax. En presentationskontext med SOP-klassen verifiering ingår alltid i uppkopplingsbegäran från lagringstillämpningsenheten.

4.2.1.3.1.3. SOP-specifik överensstämmelse för SOP-klasserna för bildlagring

Alla SOP-klasser för bildlagring som stöds av lagringstillämpningsenheten fungerar på samma sätt, om inte annat anges, och beskrivs tillsammans i detta avsnitt.

Baserat på SOP-klassen för lagring för den användarvalda bildinstansen, utför lagringstillämpningsenheten en uppkopplingsbegäran till den externa tillämpningsenheten med flera presentationskontexter, var och en med sin egen överföringssyntax som stöds av lagringstillämpningsenheten. Om ingen av de presentationskontexter som överensstämmer med SOP-klassen för lagring för den bildinstans som bearbetas godtas, notifieras användaren på lämpligt sätt om felet.

Om flera presentationskontexter godtas av den externa tillämpningsenheten för samma abstrakta syntax, väljer lagringstillämpningsenheten som standard presentationskontext baserat på den valda bilden (dvs. ultraljud eller secondary capture) innan C-STORE-processen.
Tabell 4.2-10
Statushantering för C-STORE-svar

<table>
<thead>
<tr>
<th>Tjänste-status</th>
<th>Betydelse</th>
<th>Felkod</th>
<th>Beteende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klart</td>
<td>Klart</td>
<td>0000</td>
<td>Tjänsteleverantören (SCP) har sparat SOP-instansen. Om alla valda SOP-instanser i en överföringsbegäran har statusen klar, anses överföringen ha lyckats och användaren meddelas.</td>
</tr>
<tr>
<td>Varning</td>
<td>Varning</td>
<td>B000-BFFF</td>
<td>Bildöverföringen anses ha lyckats.</td>
</tr>
<tr>
<td>*</td>
<td>Fel</td>
<td>Alla andra statuskoder</td>
<td>Tjänsteleverantören (SCP) lyckades inte spara instansen.</td>
</tr>
</tbody>
</table>

Tabell 4.2-11
Beteende vid kommunikationsfel vid lagring

<table>
<thead>
<tr>
<th>Fel</th>
<th>Beteende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>Uppkopplingen avbryts med A-ABORT och överföringsjobbet anses ha misslyckats. Orsaken till felet skrivas till loggen.</td>
</tr>
<tr>
<td>Uppkopplingen avbryts av tjänsteleverantören (SCP) eller nätverksskiktet.</td>
<td>Overföringsjobbet anses ha misslyckats. Orsaken rapporteras till användaren via loggen.</td>
</tr>
</tbody>
</table>

Obs! Loggfilen kan sparas till en USB-enhet med kommandot "shift+ctrl+L".

En misslyckad överföring kan återstartas med användaråtgärder. Programmet försöker inte automatiskt skicka om filer som inte kunde överföras.

Innehållet i olika SOP-instanser för bildlagring som skapas av DICOM-applikationen i Site~Rite® 8 ultraljudssystem överensstämmer med PS 3.3 IOD-definitionen för bild för DICOM-standarden och beskrivs i avsnittet 6.1.

4.3. KOMMUNIKATIONSPROFILER
DICOM-applikationen i Site~Rite® 8 ultraljudssystem tillhandahåller DICOM V3.0 TCP/IP-nätverksskommunikation som definierat i Del 8 av DICOM-standarden.

4.3.1. TCP/IP-stack
DICOM-applikationen i Site~Rite® 8 ultraljudssystem använder den TCP/IP-stack som finns på det datorsystem där den körs.

4.3.1.1. Stöd för fysiska media
DICOM-applikationen i Site~Rite® 8 ultraljudssystem är oberoende av det medium över vilket TCP/IP körs. Den använder samma medium som datorn den körs på.

4.4. UTÖKNINGAR/SPECIALISERINGAR/PRIVATISERINGAR
Ej tillämpligt.
4.5. KONFIGURATION

4.5.1. Namn på tillämpningsenhet/mappning för presentationsadresser
Inga standardnamn för tillämpningsenhet tillhandahålls. Namn för lokala och externa tillämpningsenheter samt fjärrserveradresser och portnummer måste konfigureras. Den konfigurerade informationen om namn på lokal tillämpningsenhet samt fjärranslutningsinformation lagras i systemet för senare användning av lagringstillämpningsenheten.

4.5.1.1. Lokala tillämpningsenhetsnamn
Endast ett lokalt tillämpningsenhetstilgällande namn kan konfigureras för lagringstillämpningsenheten. Denna konfiguration kan ändras av användaren.

4.5.1.2. Externa tillämpningsenhetsnamn
Endast en extern tillämpningsenhetskonfiguration kan göras i DICOM-applikationen i Site~Rite® 8 ultraljudssystem. Det externa tillämpningsenhetsnamnet, fjärrserverns adress (dvs. IP-adressen) och portnummer måste konfigureras vid installationen. Användaren kan när som helst ändra vårdadress och portnummer för den externa tillämpningsenheten.

4.5.1.2.1. Extern tjänsteleverantör (SCP)
Följande tabell beskriver konfigurationsalternativen för extern tjänsteleverantör (SCP):

Tabell 4.5-1
Tabell med konfigurationsparametrar för extern tjänsteleverantör

<table>
<thead>
<tr>
<th>SCP-inställningar</th>
<th>Standard</th>
<th>Konfigureras</th>
<th>Konfigurationsalternativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namn på lagringstillämpningsenhet</td>
<td>Nej</td>
<td>Ja</td>
<td>Ej tillämpligt</td>
</tr>
<tr>
<td>Namn på extern tillämpningsenhet</td>
<td>Nej</td>
<td>Ja</td>
<td>Ej tillämpligt</td>
</tr>
<tr>
<td>Extern IP-adress</td>
<td>Nej</td>
<td>Ja</td>
<td>Ej tillämpligt</td>
</tr>
<tr>
<td>Extern TCP-port</td>
<td>Nej</td>
<td>Ja</td>
<td>Ej tillämpligt</td>
</tr>
<tr>
<td>Överföringssyntax</td>
<td>Nej</td>
<td>Ja</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Kompression</td>
<td>Nej</td>
<td>Ja</td>
<td>Utan kvalitetsförlust, med kvalitetsförlust, inget</td>
</tr>
</tbody>
</table>

4.6. STÖD FÖR UТОКАДЕ TECKENTABELLER
DICOM-applikationen i Site~Rite® 8 ultraljudssystem har stöd för följande teckenuppsättningar:
- ISO-IR 6 (standard): Basic G0 Set
- ISO-IR 100: Latin Alphabet No. 1
Dessutom har DICOM-applikationen i Site~Rite® 8 ultraljudssystem stöd för följande teckenkodning i tillämpliga värderpresentationer, som patientnamn, undersökningsbeskrivning och seriebeskrivning.
- ISO_IR 144 (ISO 8859-5:1988 kompletterande latinsk/cyrilliske alfabet)

5. MEDIAUTBYTE
DICOM-applikationen i Site~Rite® 8 ultraljudssystem har inte stöd för medialagring.
6. BILAGOR

6.1. IOD-INNEHÅLL

6.1.1. Skapade SOP-instanser

Tabell 6.1-1 anger attributen för en ultraljudsbild:Secondary Capture-bild som överförs av lagringstillämpningsenheten i DICOM-applikationen i Site~Rite® 8 ultraljudssystem.

Följande tabell använder ett antal förkortningar. Förkortningarna som används i kolumnen "… finns" är:

- **VFIA**: Värde Finns Inte Alltid (attributet skickas med längden noll om inget värde finns)
- **AFIA**: Attribut Finns Inte Alltid
- **ALLTID**: Finns alltid
- **TOM**: Attributet skickas utan ett värde

Förkortningarna som används i kolumnen "Källa" är:

- **ANVÄNDARE**: Attributvärdets källa är användarinmatning
- **AUTO**: Attributvärdet genereras automatiskt
- **KONFIG**: Attributvärdets källa är en konfigurerbar parameter

6.1.1.1. IOD för Secondary Capture-bild

Tabell 6.1-1

<table>
<thead>
<tr>
<th>IE</th>
<th>Modul</th>
<th>Referens</th>
<th>Modul finns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Patientnamn</td>
<td>Tabell 6.1-2</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Undersökning</td>
<td>Allmän undersökning</td>
<td>Tabell 6.1-3</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Serier</td>
<td>Allmänna serier</td>
<td>Tabell 6.1-4</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Utrustning</td>
<td>SC-utrustning</td>
<td>Tabell 6.1-5</td>
<td>ALLTID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bild</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allmän bild</td>
<td>Tabell 6.1-6</td>
<td>ALLTID</td>
</tr>
<tr>
<td></td>
<td>Bildpixel</td>
<td>Tabell 6.1-7</td>
<td>ALLTID</td>
</tr>
<tr>
<td></td>
<td>SC-bild</td>
<td>Tabell 6.1-8</td>
<td>ALLTID</td>
</tr>
<tr>
<td></td>
<td>SOP gemensam</td>
<td>Tabell 6.1-9</td>
<td>ALLTID</td>
</tr>
</tbody>
</table>

6.1.1.2. Allmän modul

Tabell 6.1-2

<table>
<thead>
<tr>
<th>Attributnamn</th>
<th>Tagg</th>
<th>VR</th>
<th>Värde</th>
<th>Värde finns</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientnamn</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Användarinmatning eller skriptfil.</td>
<td>64 tecken.</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Patient-ID</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Användarinmatning eller skriptfil.</td>
<td>64 tecken.</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Födelsedatum patient</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Alltid tom. Längden är noll.</td>
<td></td>
<td>VFIA</td>
</tr>
<tr>
<td>Patientens kön</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Användarinmatning eller skriptfil.</td>
<td></td>
<td>ALLTID</td>
</tr>
</tbody>
</table>
Tabell 6.1-3
ALLMÄN UNDERSÖKNINGSMODUL FÖR SKAPADE SOP-INSTANSER

<table>
<thead>
<tr>
<th>Attributnamn</th>
<th>Tagg</th>
<th>VR</th>
<th>Värde</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID för undersöknings-instans</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Genereras av DICOM-applikationen i Site-Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Undersökningsdatum</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Alltid tom.</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Undersökningstid</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Alltid tom.</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Anslutningsnummer</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Alltid tom.</td>
<td>VFIA</td>
</tr>
</tbody>
</table>

Tabell 6.1-4
ALLMÄN SERIEMODUL FÖR SKAPADE SOP-INSTANSER

<table>
<thead>
<tr>
<th>Attributnamn</th>
<th>Tagg</th>
<th>VR</th>
<th>Värde</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalitet</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALLTID</td>
</tr>
<tr>
<td>UID för serieinstans</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Genereras av DICOM-applikationen i Site-Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
</tr>
</tbody>
</table>

6.1.1.3. Bildmoduler för Secondary Capture

Tabell 6.1-5
SC UTRUSTNINGSMODUL FÖR SKAPADE SC SOP-INSTANSER

<table>
<thead>
<tr>
<th>Attributnamn</th>
<th>Tagg</th>
<th>VR</th>
<th>Värde</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalitet</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Konverteringstyp</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>ALLTID</td>
</tr>
</tbody>
</table>

Tabell 6.1-6
ALLMÄN BILDMODUL FÖR SKAPADE SC SOP-INSTANSER

<table>
<thead>
<tr>
<th>Attributnamn</th>
<th>Tagg</th>
<th>VR</th>
<th>Värde</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bildtyp</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Genereras av DICOM-applikationen i Site-Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Ursprungsbeskrivning</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Genereras av DICOM-applikationen i Site-Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Bildkomprimering med kvalitetsförlust</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Genereras av DICOM-applikationen i Site-Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
</tr>
</tbody>
</table>
Tabell 6.1-7
BILDPIXELMODUL FÖR SKAPADE SC SOP-INSTANSER

<table>
<thead>
<tr>
<th>Attributnamn</th>
<th>Tagg</th>
<th>VR</th>
<th>Värde</th>
<th>Värde finns</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixeldata</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Användarvalda bildfiler (dvs. JPEG).</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Färgkanaler per pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fotometrisk tolkning</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Plankonfiguration</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Rader</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kolumnner</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Allokerade bits</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Lagrade bits</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Hög bit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Pixelrepresentation</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabell 6.1-8
SC Bildmodul för skapade SC SOP-instanser

<table>
<thead>
<tr>
<th>Attributnamn</th>
<th>Tagg</th>
<th>VR</th>
<th>Värde</th>
<th>Värde finns</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum för Secondary Capture</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Datum då bildfil (dvs. JPEG) skapades.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tid för Secondary Capture</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Tid då bildfil (dvs. JPEG) skapades.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabell 6.1-9
SOP Gemensam Modul för skapade SC SOP-instanser

<table>
<thead>
<tr>
<th>Attributnamn</th>
<th>Tagg</th>
<th>VR</th>
<th>Värde</th>
<th>Värde finns</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifik teckenuppsättning</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>”IOS_IR 100“ eller ”ISO_IR_144“</td>
<td>AFIA</td>
<td>KONFIG</td>
</tr>
<tr>
<td>UID för SOP-klass</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>”1.2.840.10008.5.1.4.1.1.7“</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>UID för SOP-instans</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kodningsschema</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Genereras av DICOM-applikationen i Site~Rite® 8 ultraljudssystem.</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
DICOM-yhteensopivuusilmoitus – Site~Rite® 8-ultraääniläjärrjestelmän DICOM-sovellus

Yrityksen nimi: BARD Access Systems, Inc.

Tuotteen nimi: Site~Rite® 8-ultraääniläjärrjestelmän DICOM-sovellus

Versio: 1.0-rev. A-1

Sisäinen asiakirjanumero: 1190674

Päivämäärä: 20.4.2015
1. YLEISTÄ YHTEENSOPIVUUSILMOITUKSESTA

Taulukossa 1-1 on yleiskuva Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen verkkipalveluilta.

<table>
<thead>
<tr>
<th>SOP-luokat</th>
<th>Palvelun käyttäjä (SCU)</th>
<th>Palvelun tarjoaja (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siirto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultraäänikuva</td>
<td>Kyllä</td>
<td>Ei</td>
</tr>
<tr>
<td>Sekundaarikaappauskuva</td>
<td>Kyllä</td>
<td>Ei</td>
</tr>
</tbody>
</table>
2. SISÄLLYSLUETTELO

1. YLEISTÄ YHTEENSOPIVUUSILMOITKSESTA ... 2
2. SISÄLLYSLUETTELO .. 3
3. JOHDANTO ... 4
 3.1. VERSIOHISTORIA ... 4
 3.2. KOHDERYHMÄ .. 4
 3.3. HIOMIOITA ... 4
 3.4. TERMIT JA MÄÄRITELMÄT ... 4
 3.5. PERUSTIETOJA DICOM-TIEDONSIIRROSTA 6
 3.6. LYHENTEET ... 7
 3.7. VIITTAUKSET ... 7
4. VERKON MUODOSTAMINEN .. 8
 4.1. TOTEUTUSMALLI ... 8
 4.1.1. Sovellusten tietovuo ... 8
 4.1.2. Sovelluskokonaisuuksien toiminnallinen määritys 8
 4.1.2.1. Tallennussovelluskokonaisuuuden toiminnallinen määritys 8
 4.1.2.2. Todellisten toimintojen toteutusjärjestys 9
 4.2. SOVELLUSKOKONAI SUUDEN MÄÄRITYKSET 9
 4.2.1. Tallennussovelluskokonaisuuuden määritykset 9
 4.2.1.1. SOP-luokat ... 9
 4.2.1.2. Assosiaatiokäytännöt ... 10
 4.2.1.2.1. Yleistä ... 10
 4.2.1.2.2. Assosiaatioiden määrä ... 10
 4.2.1.2.3. Asynkroninen luonne .. 10
 4.2.1.2.4. Toteutuksen tunnistetiedot 10
 4.2.1.3. Assosiaation aloituskäytäntö 10
 4.2.1.3.1. Lähetä kuvat -toiminto 10
 4.2.1.3.1.1. Toimintojen kuvaus ja järjestys 10
 4.2.1.3.1.2. Ehdotetut esityskontekstit 12
 4.2.1.3.1.3. SOP-kohdaisesti yhteensopivat kuvatallennuksen SOP-luokat 12
 4.3. TIEDONSIIRTOPROFIILIT .. 13
 4.3.1. TCP/IP-pino .. 13
 4.3.1.1. Tuetut fyysiset välileet ... 13
 4.4. LAAJENNUKSETP/ERIKOISRAKAI SUT/YKSITYISTÄMISET 13
 4.5. KOKOOPANO .. 14
 4.5.1. AE-nimen/esitysosoitteen määritys 14
 4.5.1.1. Paikalliset AE-nimet .. 14
 4.5.1.2. Etä-AE-nimet ... 14
 4.5.1.2.1. Etä-SCP ... 14
 4.6. LAAJENNETTUJEN MERKISTÖJEN TUKI ... 14
5. TALLENNUSVÄLINEVÄHIHTO ... 14
6. LIITTEET ... 15
 6.1. IOD-SISÄLTÖ ... 15
 6.1.1. Luotu SOP-esiintymä (-esiintymät) 15
 6.1.1.1. Sekundaarikaappauskuvan IOD 15
 6.1.1.2. Yleinen moduuli .. 15
 6.1.1.3. Sekundaarikaappauksen kuvamoduulit 16
3. JOHDANTO

3.1. VERSIOHISTORIA

<table>
<thead>
<tr>
<th>Asiakirjan versio</th>
<th>Julkaisupäivämäärä</th>
<th>Tekijä</th>
<th>Kuvaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24.3.2015</td>
<td>Tyler Durfee</td>
<td>Ensimmäinen versio</td>
</tr>
</tbody>
</table>

3.2. KOHDERYHMA

3.3. HUOMIOITA

Tällä yhteensopivuusilmoituksella ei ole tarkoitus korvata validointia, jolla varmistetaan haluttujen tietojen asianmukainen vaihto muiden DICOM-laitteiden kanssa. Käyttäjän on tosiäissä tiedostettava seuraavat tärkeät seikat:

- Erilaisten yhteensopivuusilmoitusten vertailu on vasta ensimmäinen vaihe tuotteen ja muiden DICOM-yhteensopivien laitteiden yhdistettävyyden ja yhteentoimivuuden arvioinnissa.
- Lisäksi on määritettävä ja toteutettava testejä, joilla validoidaan terveydenhuoltolaitoksen edellyttämä yhteentoimivuustaso tiettyjen yhteensopivien DICOM-laitteiden kanssa.

3.4. TERMIT JA MÄÄRITELMÄT

Tässä yhteensopivuusilmoituksessa käytettävistä termistä esitetään seuraavat epäviralliset määritelmat. Näiden termien viralliset määritelmat annetaan DICOM-standardissa.

Arvoedustus (Value Representation, VR) – yksittäisen DICOM-tietoelementin muototyypin, kuten tekstit, kokonaisluku, henkilön nimi tai koodi. DICOM-tietokohteet voidaan siirtää joko kuninkin tietoelementin tyyppin ekspilisittisen tunnistuksen kanssa (Explicit VR) tai ilman ekspilisittistä tunnistusta (Implicit VR); Implicit VR:ssä vastaanottavan sovelluksen on haettava kuninkin tietoelementin muoto DICOM-tietohakemistosta.
Assosiaatio – sovelluskokonaisuksien välille muodostettu verkon tiedonsiirtokanava.

Attribuutti – tiedon yksikkö kohteen määrityksessä; tagin yksilöimä tietoelementti. Tiedoiissa voi olla kyse monimutkaisesta tietorakenteesta (sekvenssistä), joka itsessään koostuu alemman tason tietoelementeistä. Esimerkkejä: Potilastunnus (0010,0020), hakunumero (0008,0050).

Esityskonteksti– asosiaation kautta käytettävä DICOM-verkkopalvelujoukko, josta on sovittu sovelluskokonaisuuksien kesken; sisältää abstraktit syntaksit ja siirtosyntaksit.

Joint Photographic Experts Group– joukko standardoituja kuvanpakkaustekniikoita, jotka ovat käytettävissä DICOM-sovelluksissa.

Moduuli – joukko tietokohteen määrityksen sisäisiä attribuutteja, jotka liittyvät loogisesti toisiinsa. Esimerkki: Potilasmoduuli sisältää potilaan nimen, potilastunnuksen, potilaan syntymäajan ja potilaan sukupuolen.

Neuvottelu – asosiaation ensimmäinen vaihe, jossa sovelluskokonaisuuksien kesken voidaan sopia vaihdettavista tietotyyppisteitä ja näiden tietojen koodausvaiheesta.

Palvelu/kohde-parin esintymä – tietokohde; tietty SOP-luokassa vaihdettujen tietojen esintymä. Esimerkkejä: tietty ulraäänikuva.

Palvelu/kohde-parin luokka – tietyn tietotyyppin (kohteen) verkko- tai tallennusvälinesiirron (palvelun) määritys; DICOM-yhteentoimivuusmäärityksen perusyksikkö. Esimerkkejä: Ultraäänikuvin tallennuspalvelu, pakkaussyntaksit, siirtosyntaksi tai potilastiedot.

Palveluluokan käyttäjä – sen sovelluskokonaisuuden rooli, joka käyttää DICOM-verkkopalvelua; tyyppisesti työasema. Esimerkkejä: kuvausmodaliteetti (kuvien tallennuksen SCU ja modaliteetityölön SCU), kuvaustyöasema (kuvien tallennuksen SCP ja kuvien kyselyn/haun SCU).

Palveluluokan tarjoaja – sen sovelluskokonaisuuden rooli, joka tarjoaa DICOM-verkkopalvelun; tyyppisesti palvelin, joka suorittaa toisen sovelluskokonaisuuden (palveluluokan käyttäjän) pyytämiä toimintoja. Esimerkkejä: Kuvien arkistoointi- ja siirtotjärjestelmä (kuvien tallennuksen SCP ja kuvien kyselyn/haun SCP), röntgentjärjestelmä (modaliteetityölön SCP).

Protokollatietoyksikkö – verkon kautta lähetettävän DICOM-ilmoitusten paketti (osa). Laitteiden on määrittettävä vastaanottamiensa DICOM-ilmoitusten paketin enimmäiskoko.

Siirtosyntaksi – DICOM-tietokohteen ja -ilmoitusten vaihdossa käytettävä koodaus. Esimerkkejä: pakattu JPEG (kuvat), Explicit Little Endian -arvoedustus.

Sovelluskokonaisuuden nimi – ulkoisesti tunnettu sovelluskokonaisuuden nimi, jota käytetään DICOM-sovelluksen yksilööintiin suhteessa verkon muihin DICOM-sovelluksiin.
Suomi

Sovelluskokonaisuus (Application Entity, AE) – DICOM-tietojenvaihdon päätapite, kuten DICOM-verkko tai tallennusvälineen liittymäohjelmisto; toisin sanoen ohjelmisto, joka lähetttää tai vastaanottaa DICOM-tietokohteita tai -ilmoituksia. Yhdessä laitteessa voi olla useita sovelluskokonaisuuksia.

Tagi (Tag) – tietoadapterin 32-bittinen tunniste, jossa on kaksi nelinumeroista heksadesimalinumeroa, "ryhmä" ja "elementti”. Jos "ryhmä"-numero on pariton, tagi edustaa yksityistä (valmistaja/adapteri) tietoadapteritiä. Esimerkkejä: (0010,0020) [potilastunnus], (07FE,0010) [pikselitiedot], (0019,0210) [yksityinen tietoadapteri].

Tallennusvälinesovellusprofiili (Media Application Profile) – irrotettavissa tallennusvälineillä (esim. CD-levy) vaihdettavien DICOM-tietokohteiden ja koodauksen määrittys.

Tietokohteen määrittys (Information Object Definition, IOD) – määritetty joukko attribuuetteja, jotka määrittelevät jonkin tietokohde-tyyppin; ei edustaa tiettyä tietokohdeesiintymää vaan samankaltaisten tietokohde-kohtojen luokkaa, jolla on samat ominaisuudet. Attribuutit voidaan määrittää pakollisiksi (tyyppi 1), pakollisiksi mutta mahdollisesti tuntemattomiksi (tyyppi 2) tai valinnaisiksi (tyyppi 3), ja attribuutin käyttöön voi liittyä ehtoja (tyyppit 1C ja 2C). Esimerkkejä: magneettikuvan IOD, TT-kuvan IOD, tulostustyön IOD.

Tietoturvaprofiili (Security Profile) – joukko sovelluskokonaisuuden käyttämää mekanismeja, kuten salaus, käyttäjän tunnistus ja digitaalinen allekirjoitus, joiden tarkoituksena on varmistaa vaihdettavien DICOM-tietojen luottamuksellisuus, eheys ja/tai käytettävyys.

Yksilöivä tunniste (Unique Identifier, UID) – maailmanlaajuisesti yksilöivä "pistedesimaalimerkkijono", joka yksilöi tietyn kohteen tai kohdeluokan; ISO-8824-kohdetunniste. Esimerkkejä: Tutkimustapauksen UID, SOP-luokan UID, SOP-esiintymän UID.

3.5. PERUSTIETOJA DICOM-TIEDONSIIRROSTA

Tässä luvussa selitetään yhteensopivuusilmoituksen sisältämiä termiä henkilölle, jotka eivät ole alan asiantuntijoita. Yhteensopivuusilmoituksen keskeiset termit on korostettu seuraavassa kursiivilla. Tämä luku ei korvaa DICOM-koulutusta, ja DICOM-termien merkitykset esitetään usein yksinkertaisena.

Kahden sovelluskokonaisuuden (laitteen), joiden halutaan viestivän keskenään verkon kautta DICOM-protokollan avulla, on ensin sovittava useista asioista, kun johtaa lika repressiavassa "käätelyn" aikana. Toisen kahdesta laitteesta on aloitettava assosiaatio (yhteiden muodostaminen toiseen laitteeseen), ja kysyttävä, voiko toinen laite tukea tiettyjä palveluja, tietoja ja koodauksia (neuvottelu). DICOM määrittää joukko sovellus- ja tietokohde-tyyppiä, joista kutsukin kutsutaan DICOM-näyttövelvollisuus abstraksiosta syntaksiksi. DICOM määrittää myös erilaisia tietojen koodausmenetelmiä, joita kutsutaan siirtosyntaksiksi. Neuvotteluissa aloitteen kevärä sovelluskokonaisuus voi erottaa abstraktin syntaksin ja siirtosyntaksin yhdistelmäjä, joita käytetään assosiaatiolaisa; näitä yhdistelmiä kutsutaan esityskonteksteiksi. Vastaanottava sovelluskokonaisuus hyväksyy tukemansa esityskontekstit.
Assosiaationeuvalussa laitteet voivat sopia kunkin esityskontekstin osalta myös rooleista – siitä, kumpi on palveluluokan käyttäjä (SCU, työasema) ja kumpi palveluluokan tarjoaja (SCP, palvelin). Yleensä yhteyden muodostamisen aloittava laite on SCU, eli työasemajärjestelmä kutsuu palvelinta, mutta näin ei ole aina.

Valmistuttuaan assosiaationeuvalus mahdollistaa maksimikokoisten verkkopakettien (PDU), *fietoturvatietojen* ja verkkopalveluasetusten (nk. *laajennettujen neuvottelutietojen*) vaihtamisen.

Kaksi sovelluskokonaisuutta voi myös viestiä keskenään vaihtotietovälineen (esim. CD-R-levy) kautta. Koska assosiaationeuvalussa ei ole tällöin mahdollista, molemmat käyttävät *tallennusvälinesovellusprofiilia*, jossa määritetään "valmiiksi neuvoteltu" vaihtotietovälinemunto, abstrakti syntaksi ja siirtosyntaksi.

3.6. LYHENTEET

Tässä asiakirjassa käytetään seuraavia kirjainyhdistelmiä ja lyhenteitä:

AICR	American College of Radiology
DICOM | Digital Imaging and Communications in Medicine
NEMA | National Electrical Manufacturers Association
AE | Sovelluskokonaisuus (Application Entity)
PDU | Protokollatietyöksikkö (Protocol Data Unit)
SCP | Palveluluokan tarjoaja (Service Class Provider)
SCU | Palveluluokan käyttäjä (Service Class User)
SOP | Palvelu/kohde-paari (Service/Object Pair)
TCP/IP | Tiedonsiirron ohjausprotokolla/internetprotokolla (Transmission Control Protocol/Internet Protocol)
UID | Yksilöivä tunniste (Unique Identifier)
LEE | Little Endian Explicit
LEI | Little Endian Implicit
BEE | Big Endian Explicit

3.7. VIITTAUKSET

|---|---|
4. VERKON MUODOSTAMINEN

4.1. TOTEUTUSMALLI

4.1.1. Sovellusten tietovuo

Kuva 4.1-1
Sovellusten tietovuokaavio

4.1.2. Sovelluskokonaisuksien toiminnallinen määrittely

4.1.2.1. Tallennussovelluskokonaisuuden toiminnallinen määrittely

4.1.2.2. Todellisten toimintojen toteutusjärjestys

1. Käyttäjä syöttää potilas- ja tutkimustiedot
2. Käyttäjä kaappaa kuvan
3. Käyttäjä valitsee kuvan ja lähettää sen
4. Kaapattujen kuvien tallennus

Kuva 4.1-2
TOTEUTUSJÄRJESTYSTÄ KOSKEVAT RAJOITTEET

Normaalisessa työnkulussa noudatetaan kuvan 4.1-2 mukaisia toteutusjärjestyksen rajoitteita:

1. Käyttäjä syöttää tai päivittää potilastiedot tarpeen mukaan.
2. Käyttäjä tallentaa kuvan tutkimuksen aikana.

4.2. SOVELLUSKOKONAISSUUDENT MÄÄRITYKSET

4.2.1. Tallennussovelluskokonaisuuden määritykset

4.2.1.1. SOP-luokat

Site~Rite® 8-ultraäänijärjestelmän DICOM-sovellus tukee vakiona seuraavia SOP-luokkia:

Taulukko 4.2-1
AE-tallennuksen SOP-luokat

<table>
<thead>
<tr>
<th>SOP-luokan nimi</th>
<th>SOP-luokan UID</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultraäänikuvan tallennus</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Kyllä</td>
<td>Ei</td>
</tr>
<tr>
<td>Sekundaarikaappauksen (SC) kuvantallennus</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Kyllä</td>
<td>Ei</td>
</tr>
</tbody>
</table>
4.2.1.2. Assosiaatiokäytännöt

4.2.1.2.1. Yleistä
DICOM-standardin mukainen sovelluskontekstinimi on DICOM 3.0 -järjestelmässä aina ehdotettu:

<table>
<thead>
<tr>
<th>Taulukko 4.2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM-sovelluskonteksti AE-tallennuksessa</td>
</tr>
<tr>
<td>Sovelluskontekstinimi</td>
</tr>
</tbody>
</table>

4.2.1.2.2. Assosiaatioiden määrä

<table>
<thead>
<tr>
<th>Taulukko 4.2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE-tallennuksen aloittamien assosiaatioiden määrä</td>
</tr>
<tr>
<td>Smanaikaisten assosiaatioiden enimmäismäärä</td>
</tr>
</tbody>
</table>

4.2.1.2.3. Asynkroninen luonne
Site–Rite® 8-ultraäänijärjestelmän DICOM-sovellus ei tue asynkronista tiedonsiirtoa (eli useita odottavia tapahtumia yhden assosiaation kautta).

<table>
<thead>
<tr>
<th>Taulukko 4.2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynkroninen luonne tallennuksen SCU:na</td>
</tr>
<tr>
<td>Odottavien asynkronisten tapahtumien enimmäismäärä</td>
</tr>
</tbody>
</table>

4.2.1.2.4. Toteutuksen tunnistetiedot
Tämä sovelluskokonaisuuden toteutustiedot ovat:

<table>
<thead>
<tr>
<th>Taulukko 4.2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM-toteutusluokka</td>
</tr>
<tr>
<td>Toteutusluokan UID</td>
</tr>
</tbody>
</table>

4.2.1.3. Assosiaation aloituskäytäntö

4.2.1.3.1. Lähetä kuvat -toiminto

4.2.1.3.1.1. Toimintojen kuvaus ja järjestys
Käyttäjä voi valita kuvat ja pyytää sovelluksen käytöllisyyttä niiden lähettämistä valmiiksi määritettyyn kohdesijaintiin. Jokainen pyyntö suoritetaan välittömästi lähetyspainikkeen valinnan jälkeen, ja käyttäjä saa ilmoituksen siirron tilasta.

Kuva 4.2-6

Lähetä kuvat -toiminnon toteutusjärjestys

Tallennus-AE:n ja etä-AE:n (PACS-arkisto tai kuvanhallintaa tukeva tallennuspalveluluokka SCP:nä) välisen yhteyden mahdollinen toteutusjärjestys on esitetty kuvassa 4.2-6:

1. Käyttäjä valitsee yhden tai useampia siirrettäviä kuvia.
3. Yksi käyttäjän valitsema kuva siirretään etä-AE:hen C-STORE-pyynnön avulla, ja etä-AE vastaan C-STORE-vastaauksella (tilana "onnistui").
4. Tallennus-AE sulkee assosiaation.
5. Tallennus-AE käsittelee järjestyksessä seuraavan kuvan vaiheiden 2–4 mukaisesti, kunnes kaikki kuvat on siirretty.
4.2.1.3.2. Ehdotetut esityskontekstit

Site-Rite® 8-ultraäännijärjestelmän DICOM-sovellus voi ehdottaa mitä tahansa seuraavassa taulukossa mainittua esityskontekstia:

Taulukko 4.2-7
LÄHETÄ KUVAT -TOIMINNON EHDOTETTU ESITYSKONTEKSTI

<table>
<thead>
<tr>
<th>Esityskontekstitaulukko</th>
<th>Abstrakti syntaksi</th>
<th>Siirtosyntaksi</th>
<th>Rooli</th>
<th>Ulk. neg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nimi</td>
<td>UID</td>
<td>Nimiluettelo</td>
<td>UID-luettelo</td>
<td>SCU</td>
</tr>
<tr>
<td>Ultraäänikuvan tallennus</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Katso taulukko 4.2-8</td>
<td>Katso taulukko 4.2-8</td>
<td>SCU</td>
</tr>
<tr>
<td>Sekundaarikaappauksen (SC) kuvantallennus</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Katso taulukko 4.2-8</td>
<td>Katso taulukko 4.2-8</td>
<td>SCU</td>
</tr>
</tbody>
</table>

Taulukko 4.2-8
Ehdotettu siirtosyntaksi

<table>
<thead>
<tr>
<th>Siirtosyntaksin nimi</th>
<th>Siirtosyntaksin UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit VR Little Endian (DICOM-oletus)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Explicit VR Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Explicit VR Big Endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

Taulukko 4.2-9
Pakkaus

<table>
<thead>
<tr>
<th>Siirtosyntaksin nimi</th>
<th>Siirtosyntaksin UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häviöllinen JPEG</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>Häviöتان JPEG</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

4.2.1.3.3. SOP-kohtaisesti yhteensopivat kuvatallennuksen SOP-luokat

Kaikki tallennus-AE:n tukemat kuvatallennuksen SOP-luokat toimivat samalla tavalla, ellei toisin mainita, ja ne kuvataan tässä luvussa.

Jos etä-AE hyväksyy useita esityskonteksteja samalla abstraktille syntaksille, tallennus-AE valitsee oleokuksena esityskontekstin valitun kuvan (eli ultraääni- tai sekundaarikaappauksen) perusteella ennen C_STORE-prosessia.
Tallennus-AE:n toiminta, kun se havaitsee C-STORE-vastauksessa tilakoodin, on tiivistetty seuraavassa taulukossa:

Taulukko 4.2-10

<table>
<thead>
<tr>
<th>Palvelu Tila</th>
<th>Lisätarkoitus</th>
<th>Virhekoodi</th>
<th>Toiminta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onnistui</td>
<td>Onnistui</td>
<td>0000</td>
<td>SCP on tallentanut SOP-esiintymän onnistuneesti. Jos siirtopyynnön kaikkien valittujen SOP-esiintymien tilana on "onnistui", siirto katsotaan onnistuneeksi ja käyttäjä saa tästä tiedon.</td>
</tr>
<tr>
<td>Varoitus</td>
<td>Varoitus</td>
<td>B000-BFFF</td>
<td>Kuvansiirto katsotaan onnistuneeksi.</td>
</tr>
<tr>
<td>*</td>
<td>Virhe</td>
<td>Mika tahansa mu tilakoodi</td>
<td>SCP ei onnistunut tallentamaan esiintymää.</td>
</tr>
</tbody>
</table>

Tallennus-AE:n toiminta tiedonsiirtovirheen ilmetessä on tiivistetty seuraavassa taulukossa:

Taulukko 4.2-11

<table>
<thead>
<tr>
<th>Poikkeus</th>
<th>Toiminta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aikakatkaisu</td>
<td>Assosiaatio keskeytetään A-ABORT-toiminnolla ja siirtoyö katsotaan epäonnistuneeksi. Syy raportoidaan lokitiedostoon.</td>
</tr>
<tr>
<td>Assosiaation keskeyttää SCP tai verkkotaso</td>
<td>Siirtotyö katsotaan epäonnistuneeksi. Syy raportoidaan käyttäjälle lokitiedoston kautta.</td>
</tr>
</tbody>
</table>

Huomautus: Lokitiedosto voidaan tallentaa USB-tallennusvälineelle valitsemalla "vaihto+ctrl+L".

Käyttäjä voi käynnistää epäonnistuneen siirron uudelleen. Sovellus ei automaattisesti yritä lähetettä uudelleen tiedostosta, joiden siirto epäonnistui.

Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen luomien erilaisten kuvatallennus-SOP-esiintymien sisältö on DICOM-standardin PS 3.3-kuva-IOD-määrityksen mukainen, ja se on kuvattu luvussa 6.1.

4.3. TIEDONSIIRTOPROFIILIT

Site~Rite® 8-ultraäänijärjestelmän DICOM-sovellus tukee DICOM V3.0 TCP/IP-verkkotiedonsiirtoa DICOM-standardin osan 8 mukaisesti.

4.3.1. TCP/IP-pino

Site~Rite® 8-ultraäänijärjestelmän DICOM-sovellus perii TCP/IP-pinonsa pohjalla olevalta tietokonejärjestelmältä.

4.3.1.1. Tuetut fyysiset välineet

Site~Rite® 8-ultraäänijärjestelmän DICOM-sovellus suhtautuu neutraaliisti fyysisen tallennusvälineeseen, jonka kautta TCP/IP toimii; se perii tallennusvälineen pohjalla olevalta tietokonejärjestelmältä.

4.4. LAAJENNUKSET/ERIKOISRatkaisut/YKSITYISTÄMISET

Ei sovellu.
4.5. KOKOONPANO

4.5.1. AE-nimen/esitysosoitteen määrittäminen

AE-oletusnimiä ei käytetä. Paljalliset AE-nimet, etä-AE-nimet sekä etäpalvelimen
isäntäosoitteet ja porttinumerot on määritettävä. Määritetty paikallinen AE-nimi ja
etäyhteystiedot tallennetaan järjestelmään talENNUS-AE:n myöhempää tarvetta varten.

4.5.1.1. Paikalliset AE-nimet

Tallennus-AE:lle voidaan määrittää vain yksi paikallinen AE-nimi. Käyttäjä voi muuttaa
tätä määrittystä.

4.5.1.2. Etä-AE-nimet

Site~Rite® 8-ultraäänijärjestelmän DICOM-sovellus sallii vain yhden etä-AE-määrityksen.
Etä-AE-nimen, etäpalvelimen isäntäosoitteen (eli IP-osoitteen) ja porttinumeron on
oltava määritettyinä asennushetkellä. Käyttäjä voi muuttaa etä-AE:n, isäntäosoitteen
ja porttinumeron määristystä milloin tahansa.

4.5.1.2.1. Etä-SCP

Seuraavassa taulukossa esitetään etä-SCP:n määrittysvaihtoehdot:

| Taulukko 4.5-1
| Etä-SCP:n määrittysparametritaulukko |
|-----------------|-----------------|-----------------|
| SCP-asetukset | Oletus | Määritettävä | Määrittysvaihtoehdot |
| Tallennussovelluskokonaisuuden nimi | Ei | Kyllä | Ei sovellu |
| Etäsovelluskokonaisuuden nimi | Ei | Kyllä | Ei sovellu |
| Etä-IP-osoite | Ei | Kyllä | Ei sovellu |
| Etä-TCP-portti | Ei | Kyllä | Ei sovellu |
| Siirtosyntaksi | Ei | Kyllä | LEE, LEI, BEE |
| Pakkaus | Ei | Kyllä | Häviöön, häviöllinen, ei mitään |

4.6. LAAJENNETTUJEN MERKISTÖJEN TUKI

Site~Rite® 8-ultraäänijärjestelmän DICOM-sovellus tukee seuraavia merkistöjä:
- ISO-IR 6 (oletus): G0-perusmerkistö
- ISO-IR 100: Latinalaiset aakkoset 1

Lisäksi Site~Rite® 8-ultraäänijärjestelmän DICOM-sovellus tukee seuraavan merkistön
käyttöä asiaankuuluvissa arvoedustuksissa, kuten potilaan nimessä, tutkimuksen
kuvaoksessa ja sarjan kuvaoksessa.
- ISO_IR 144 (ISO 8859-5:1988, latinalaisten/kyrillisten aakkosten
täydennysmerkistö)

5. TALLENNSVÄLINEVAIHTO

Site~Rite® 8-ultraäänijärjestelmän DICOM-sovellus ei tuke tallennusvälineen
funktionaali.
6. LIITTEET

6.1. IOD-SISÄLTÖ

6.1.1. Luotu SOP-esiintymä (-esiintymät)
Taulukossa 6.1-1 määritetään ultraääni-/sekundaarikaappauskuvan attribuutit, jotka Site~Rite® 8-ultraääniäärjestelmän DICOM-sovelluksen tallennus-AE lähettää.

Seuraavissa taulukoissa käytetään useita lyhenteitä. "... esiintyminen" -sarakeessa käytetään seuraavia lyhenteitä:

<table>
<thead>
<tr>
<th>Lyh.</th>
<th>Selite</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNAP</td>
<td>Arvoa ei aina esiinny (Value Not Always Present; attribuutin lähetyspituus on nolla, jos arvoa ei esiinny)</td>
</tr>
<tr>
<td>ANAP</td>
<td>Attribuuttia ei aina esiinny (Attribute Not Always Present)</td>
</tr>
<tr>
<td>AINA</td>
<td>Esintyy aina</td>
</tr>
<tr>
<td>TYHJÄ</td>
<td>Attribuutti lähetetään ilman arvoa</td>
</tr>
</tbody>
</table>

"Lähde"-sarakeessa käytetään seuraavia lyhenteitä:

<table>
<thead>
<tr>
<th>Lyh.</th>
<th>Selite</th>
</tr>
</thead>
<tbody>
<tr>
<td>KÄYTTÄJÄ</td>
<td>Attribuutin arvon lähteenä on käyttäjän syöte</td>
</tr>
<tr>
<td>AUTO</td>
<td>Attribuutin arvo muodostetaan automaattisesti</td>
</tr>
<tr>
<td>KONFIG</td>
<td>Attribuutin arvon lähteenä on määritettävä parametri</td>
</tr>
</tbody>
</table>

6.1.1.1. Sekundaarikaappauskuvan IOD

Taulukko 6.1-1

LUOTUKEN ULTRAÄÄNI- JA SEKUNDAARIAKKAAPPAUSTEN SOP-ESIINTYMIEN IOD

<table>
<thead>
<tr>
<th>IE</th>
<th>Moduuli</th>
<th>Viite</th>
<th>Moduulin esiintyminen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potilas</td>
<td>Potilaan nimi</td>
<td>Taulukko 6.1-2</td>
<td>AINA</td>
</tr>
<tr>
<td>Tutkimus</td>
<td>Yleinen tutkimus</td>
<td>Taulukko 6.1-3</td>
<td>AINA</td>
</tr>
<tr>
<td>Sarja</td>
<td>Yleinen sarja</td>
<td>Taulukko 6.1-4</td>
<td>AINA</td>
</tr>
<tr>
<td>Laite</td>
<td>SC-laite</td>
<td>Taulukko 6.1-5</td>
<td>AINA</td>
</tr>
</tbody>
</table>

Kuva

<table>
<thead>
<tr>
<th>IE</th>
<th>Moduuli</th>
<th>Viite</th>
<th>Moduulin esiintyminen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potilaan kuva</td>
<td>Taulukko 6.1-6</td>
<td>AINA</td>
<td></td>
</tr>
<tr>
<td>Kuvapikseli</td>
<td>Taulukko 6.1-7</td>
<td>AINA</td>
<td></td>
</tr>
<tr>
<td>SC-kuva</td>
<td>Taulukko 6.1-8</td>
<td>AINA</td>
<td></td>
</tr>
<tr>
<td>Yleinen SOP</td>
<td>Taulukko 6.1-9</td>
<td>AINA</td>
<td></td>
</tr>
</tbody>
</table>

6.1.1.2. Yleinen moduuli

Taulukko 6.1-2

LUOTUJEN SOP-ESIINTYMIEN POTILASMODUULI

<table>
<thead>
<tr>
<th>Attribuutin nimi</th>
<th>Tagi</th>
<th>VR</th>
<th>Arvo</th>
<th>Arvon esiintyminen</th>
<th>Lähde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potilaan nimi</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Käyttäjän syöte tai merkkijonotiedosto. Enintään 64 merkkiä</td>
<td>AINA</td>
<td>KÄYTTÄJÄ</td>
</tr>
<tr>
<td>Potilaan tunnus</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Käyttäjän syöte tai merkkijonotiedosto. Enintään 64 merkkiä</td>
<td>AINA</td>
<td>KÄYTTÄJÄ</td>
</tr>
<tr>
<td>Potilaan syntymäaika</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Aina tyhjä. Pituus nolla</td>
<td>VNAP</td>
<td>KÄYTTÄJÄ</td>
</tr>
<tr>
<td>Potilaan sukupuoli</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Käyttäjän syöte tai merkkijonotiedosto</td>
<td>AINA</td>
<td>KÄYTTÄJÄ</td>
</tr>
</tbody>
</table>
Taulukko 6.1-3
LUOTUJEN SOP-ESIINTYMIEN YLEINEN TUTKIMUSMODUULI

<table>
<thead>
<tr>
<th>Attribuutin nimi</th>
<th>Tagi</th>
<th>VR</th>
<th>Arvo</th>
<th>Arvon esintyminen</th>
<th>Lähde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutkimustapauksen UID</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Site~Rite® 8 -ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tutkimuksen päivämäärä</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Aina tyhjä</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tutkimuksen kellonaika</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Aina tyhjä</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Hakunumero</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Aina tyhjä</td>
<td>VNAP</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Taulukko 6.1-4
LUOTUJEN SOP-ESIINTYMIEN YLEINEN SARJAMODUULI

<table>
<thead>
<tr>
<th>Attribuutin nimi</th>
<th>Tagi</th>
<th>VR</th>
<th>Arvo</th>
<th>Arvon esintyminen</th>
<th>Lähde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modaliteetti</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Sarjaesiintymän UID</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Site~Rite® 8 -ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. Sekundaarikaappauksen kuvamoduulit

Taulukko 6.1-5
LUOTUJEN SC SOP-ESIINTYMIEN SC-LAITEMODUULI

<table>
<thead>
<tr>
<th>Attribuutin nimi</th>
<th>Tagi</th>
<th>VR</th>
<th>Arvo</th>
<th>Arvon esintyminen</th>
<th>Lähde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modaliteetti</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Muuntotyyppi</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Taulukko 6.1-6
LUOTUJEN SC SOP-ESIINTYMIEN YLEINEN KUVAMODUULI

<table>
<thead>
<tr>
<th>Attribuutin nimi</th>
<th>Tagi</th>
<th>VR</th>
<th>Arvo</th>
<th>Arvon esintyminen</th>
<th>Lähde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuvatyyppi</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Site~Rite® 8 -ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Derivoinnin kuvaus</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Site~Rite® 8 -ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Häviöllinen kuvanpakkaus</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Site~Rite® 8 -ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Attribuutin nimi</td>
<td>Tagi</td>
<td>VR</td>
<td>Arvo</td>
<td>Arvon esiintyminen</td>
<td>Lähde</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
<td>----</td>
<td>---</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Pikselitiedot</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Käyttäjän valitsemat kuvatiedostot (JPEG)</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Näytteitä per pikseli</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fotometrinen tulkinta</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tasomääritys</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Rivit</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Sarakkeet</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitsAllocated</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitsStored</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>HighBit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>PixelRepresentation</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Site~Rite® 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Taulukko 6.1-8
LUOTUJEN SC SOP-ESIINTYMIEN SC-KUVAMODUULI

<table>
<thead>
<tr>
<th>Attribuutin nimi</th>
<th>Tagi</th>
<th>VR</th>
<th>Arvo</th>
<th>Arvon esiintyminen</th>
<th>Lähde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sekundaarikaappauksen päivämäärä</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Kuvatiedoston (JPEG) luontipäivämäärä</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Sekundaarikaappauksen kellonaika</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Kuvatiedoston (JPEG) luontiaika</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Attribuutin nimi</td>
<td>Tagi</td>
<td>VR</td>
<td>Arvo</td>
<td>Arvon esintyminen</td>
<td>Lähde</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------</td>
<td>----</td>
<td>--</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Erityinen merkistö</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>"IOS_IR 100" tai "ISO_IR_144"</td>
<td>ANAP</td>
<td>KONFIG</td>
</tr>
<tr>
<td>SOP-luokan UID</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>"1.2.840.10008.5.1.4.1.1.7"</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>SOP-esiintymän UID</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Site~Rite™ 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
<tr>
<td>Koodausjärjestelmän nimittäjä</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Site~Rite™ 8-ultraäänijärjestelmän DICOM-sovelluksen muodostama</td>
<td>AINA</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Valmistaja:
Bard Access Systems, Inc.
605 North 5600 West
Salt Lake City, UT 84116
Yhdysvallat

Puhelin: +1 801 522 5000
Asiakaspalvelu: +1 800 545 0890
Tekninen/kliininen tuki: +1 800 443 3385
Faksi: +1 801 522 4948
www.bardaccess.com

Bard ja Site~Rite ovat C. R. Bard, Inc.:n tavaramerkkejä tai rekisteröityjä tavaramerkkejä. Kaikki muut tavaramerkit ovat omistajiensa omaisuutta.

Koottu Yhdysvalloissa
DICOM-samsvarserklæring for Site~Rite® 8 ultralydsystem DICOM

Selskapsnavn: BARD Access Systems, Inc.

Produktnavn: Site~Rite® 8 ultralydsystem DICOM

Versjon: 1.0-rev. A-1

Internt dokumentnummer: 1190674

Dato: April 20, 2015
1. SAMSVARSERKLÆRINGSOVERSIKT

Tabell 1-1 gir en oversikt over nettverkstjenester som utføres av Site~Rite® 8-ultralydsystemets DICOM-applikasjon.

<table>
<thead>
<tr>
<th>Nettverkstjeneste</th>
<th>SOP-klasser</th>
<th>Tjenestebruker (SCU)</th>
<th>Tjenesteleverandør (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overføring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultralydbilde</td>
<td></td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Secondary Capture-bilde</td>
<td></td>
<td>Ja</td>
<td>Nei</td>
</tr>
</tbody>
</table>
2. INNHOLDSFORTEGNELSE

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beskrivelse</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SAMSVARSERKLÆRINGSOVERSIKT</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>INNHOLDSFORTEGNELSE</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>INNELEDNING</td>
<td>4</td>
</tr>
<tr>
<td>3.1.</td>
<td>REVISJONSOVERSIKT</td>
<td>4</td>
</tr>
<tr>
<td>3.2.</td>
<td>MÅLGRUPPE</td>
<td>4</td>
</tr>
<tr>
<td>3.3.</td>
<td>MERKNADER</td>
<td>4</td>
</tr>
<tr>
<td>3.4.</td>
<td>BEGREPER OG DEFINISJONER</td>
<td>4</td>
</tr>
<tr>
<td>3.5.</td>
<td>GRUNNLEGGENDE OM DICOM-KOMMUNIKASJON</td>
<td>6</td>
</tr>
<tr>
<td>3.6.</td>
<td>FORKORTELSESTRUSKJERES</td>
<td>7</td>
</tr>
<tr>
<td>3.7.</td>
<td>REFERANSPORER</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>NETTVERK</td>
<td>8</td>
</tr>
<tr>
<td>4.1.</td>
<td>GJENNOMFØRINGSMODELL</td>
<td>8</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Applikasjonsdataflyt</td>
<td>8</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Funksjonell definisjon av AE-er</td>
<td>8</td>
</tr>
<tr>
<td>4.1.2.1.</td>
<td>Funksjonell definisjon av lagringsapplikasjonenhet</td>
<td>8</td>
</tr>
<tr>
<td>4.1.2.2.</td>
<td>Rekkfeølge på reelle aktiviteter</td>
<td>9</td>
</tr>
<tr>
<td>4.2.</td>
<td>AE-SPEISIFIKASJONER</td>
<td>9</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Spesifikasjoner for lagringsapplikasjonenhet</td>
<td>9</td>
</tr>
<tr>
<td>4.2.1.1.</td>
<td>SOP-klasser</td>
<td>9</td>
</tr>
<tr>
<td>4.2.1.2.</td>
<td>Forbindelsesretningstyper</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1.2.1.</td>
<td>Generelt</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1.2.2.</td>
<td>Antall forbindelser</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1.2.3.</td>
<td>Asynkronitet</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1.2.4.</td>
<td>Implementerings-ID-informasjon</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1.3.</td>
<td>Retningstruktur for forbindelsesinitialering</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1.3.1.</td>
<td>Aktivitet – sende bilder</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1.3.1.1.</td>
<td>Beskrivelse av og rekkfeølge på aktiviteter</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1.3.1.2.</td>
<td>Forstud av presentasjonskontekster</td>
<td>12</td>
</tr>
<tr>
<td>4.2.1.3.1.3.</td>
<td>SOP-speisifik samsvarende SOP-klasser for bildeplagring</td>
<td>12</td>
</tr>
<tr>
<td>4.3.</td>
<td>KOMMUNIKASJONSPROFILER</td>
<td>13</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>TCP/IP-stakk</td>
<td>13</td>
</tr>
<tr>
<td>4.3.1.1.</td>
<td>Støtte av fysiske medier</td>
<td>13</td>
</tr>
<tr>
<td>4.4.</td>
<td>UTVIDELSER/SPECIALISERING/PRIVATISERING</td>
<td>13</td>
</tr>
<tr>
<td>4.5.</td>
<td>KONFIGURASJON</td>
<td>14</td>
</tr>
<tr>
<td>4.5.1.</td>
<td>AE-tittel/presentasjonadressetforordning</td>
<td>14</td>
</tr>
<tr>
<td>4.5.1.1.</td>
<td>Lokale AE-titler</td>
<td>14</td>
</tr>
<tr>
<td>4.5.1.2.</td>
<td>Eksterne AE-titler</td>
<td>14</td>
</tr>
<tr>
<td>4.5.1.2.1.</td>
<td>Ekstern SCP</td>
<td>14</td>
</tr>
<tr>
<td>4.6.</td>
<td>STØTTE TIL UTVIDEDE TEGNSETT</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>MEDIEUTVEKSLING</td>
<td>14</td>
</tr>
<tr>
<td>6.</td>
<td>VEDLEGG</td>
<td>15</td>
</tr>
<tr>
<td>6.1.</td>
<td>IOD-INNHOLD</td>
<td>15</td>
</tr>
<tr>
<td>6.1.1.</td>
<td>SOP-føremet(is) opprettet</td>
<td>15</td>
</tr>
<tr>
<td>6.1.1.1.</td>
<td>IOD for Secondary Capture-bilde</td>
<td>15</td>
</tr>
<tr>
<td>6.1.1.2.</td>
<td>Fellesmodul</td>
<td>15</td>
</tr>
<tr>
<td>6.1.1.3.</td>
<td>Secondary Capture-bildemoduler</td>
<td>16</td>
</tr>
</tbody>
</table>
3. INNLEDNING

3.1. REVISJONSOVERSIKT

<table>
<thead>
<tr>
<th>Dokumentversjon</th>
<th>Utgivelsesdato</th>
<th>Forfatter</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24. mars 2015</td>
<td>Tyler Durfee</td>
<td>Opprinnelig versjon</td>
</tr>
</tbody>
</table>

3.2. MÅLGRUPPE

Dette dokumentet er skrevet for personer som må forstå hvordan Site~Rite® 8-ultralydsystemets DICOM-applikasjon integreres i helseinstitusjonen. Dette inkluderer både de som er ansvarlige for de overordnede retningslinjene for bildebehandlingsnettverk og -arkitektur, samt de som skal integrere det og trenger en detaljert forståelse av DICOM-funksjonene i produktet. Dette dokumentet inneholder noen grunnleggende DICOM-definisjoner, slik at alle lesere kan forstå hvordan dette produktet implementerer DICOM-funksjoner. Det forventes imidlertid at integratorer fullt ut forstår alle DICOM-begreper, hvordan tabellene i dette dokumentet er knyttet til produktets funksjonalitet, og hvordan denne funksjonaliteten kan integreres med andre enheter som støtter kompatible DICOM-funksjoner.

3.3. MERKNADER

Formålet med denne DICOM-samsvarserklæringen er å legge til rette for integrering mellom Site~Rite® 8 ultralydssystem DICOM og andre DICOM-produkter. Samsvarserklæringen skal leses og forstås i sammenheng med DICOM-standarden. DICOM i seg selv garanterer ikke interoperabilitet. Samsvarserklæringen legger imidlertid til rette for en sammenligning på grunnvå for interoperabilitet mellom ulike applikasjoner som støtter kompatibel DICOM-funksjonalitet.

Samsvarserklæringen er ikke ment å erstatte validering med annet DICOM-utstyr for å sikre riktig utveksling av tiltenkt informasjon. Faktisk bør brukeren være oppmerksom på følgende viktige punkter:

- Sammenligningen av ulike samsvarserklæringer er bare det første trinnet ved vurdering av sammenkobling og interoperabilitet mellom produktet og annet DICOM-samsvarende utstyr.
- Testprosedyrer bør defineres og gjennomføres for å validere den nødvendige graden av interoperabilitet med spesifikt kompatibelt DICOM-utstyr, slik det er etablert av helseinstitusjonen.

3.4. BEGREPER OG DEFINISJONER

Uformelle definisjoner er gitt for følgende begreper som brukes i denne samsvarserklæringen. DICOM-standarden er autoritativ kilde til formelle definisjoner for disse begrepene.

Applikasjonskontext – spesifisering av kommunikasjonstypen som brukes mellom applikasjonsenheter. Eksempel: DICOM-nettverksprotokoll.

Attributt – en informasjonenhet i en objektd definisjon; et dataelement identifisert av en kode. Denne informasjonen kan være en komplex datastruktur (sekkens), som i seg selv består av dataelementer på lavere nivå. Eksempler: Pasient-ID (0010,0020), tilgangsnummer (0008,0050).

Forbindelse – en nettverkskommunikasjonskanal konfigurert mellom applikasjonsenheter.

Forhandling – første fase av etableringen av forbindelse som gjør at applikasjonsenheter kan bli enige om hvilke datatyper som skal utveksles, og hvordan disse dataene vil bli kodet.

Informasjonsobjektdefinisjon (IOD) – det spesifiserte settet av attributter som utgjør en type dataobject; representerer ikke en bestemt forekomst av dataobjectet, men heller en klasse av lignende dataobjekter som har de samme egenskapene. Attributtene kan angi som obligatorisk (type 1), påkrevd, men muligens ukjent (type 2) eller valgfritt (type 3), og det kan være forhold knyttet til bruk av et attributt (type 1C og 2C). Eksempler: MR-bilde IOD, CT-bilde IOD, utskriftsjobb IOD.

Joint Photographic Experts Group (JPEG) – et sett av standardiserte bildekomprimeringsteknikker som er tilgjengelige for bruk av DICOM-applikasjoner.

Kode – en 32-biter identifikator for et dataelement, representert som to fire sifrede heksadesimaltall, "gruppen" og "elementet". Hvis tallet for "gruppen" er et oddetall, gjelder koden et privat (produsentspesifikt) dataelement. Eksempler: (0010,0020) [Pasient-ID], (07FE, 0010) [Pikseldata], (0019,0210) [privat dataelement].

Medieapplikasjonsprofil – spesifisering av DICOM-informasjonso objekt og -koding utvekslet på flyttbare medier (for eksempel CD-er).

Modul – et sett av attributter innenfor en informasjonso b jektdefinisjon som er logisk forbundet med hverandre. Eksempel: Pasientmodulen omfatter pasientens navn, ID, fødselsdato og kjønn.

Presentasjonkontext – settet med DICOM-nettverkstjenester som brukes over en forbindelse, som er forhandlet frem mellom applikasjonsenheter; omfatter abstrakt syntaks og overføringsyntaks.

Protokolldataenhet (PDU) – en pakke (del) av en DICOM-melding som sendes over nettverket. Enheter må oppgi den maksimale pakkestørrelsen de kan motta for DICOM-meldinger.

Sikkerhetsprofil – et sett av mekanismer, slik som kryptering, brukerautentisering eller digitale signaturer, som brukes av en applikasjonsenhet for å sikre konfiden sialitet, integritet og/eller tilgjengelighet for DICOM-data som utveksles.

Tittel på applikasjonsenhet – det eksternt kjente navnet på en applikasjonsenhet brukes til å identifisere en DICOM-applikasjon overfor andre DICOM-applikasjoner i nettverket.
Tjeneste/objekt-parforekomst (SOP) – et informasjonsobjekt; en spesifikk forekomst av informasjon utvekslet i en SOP-klasse. Eksempler: et spesifikt ultrydbilde.

Tjeneste/objekt-parklasse (SOP) – spesifisering av nettsverket eller medieoverføringen (tjeneste) av en bestemt datatype (objekt); den grunnleggende enheten for DICOM-interoperabilitetsspesifikasjonen. Eksempler: Lagringstjeneste for ultralydbilde, komprimeringssyntaks, overføringssyntaks eller pasientinformasjon.

Unik identifikator (UID) – en globalt unik streng i "punktumdesimalformat" som identifiserer et spesifikt objekt eller en spesifikk objektklasse; en ISO-8824 objektidentifikator. Eksempler: Studieforekomst UID, SOP-klasse UID, SOP-forekomst UID.

Verdirepresentasjon (VR) – formattypen for et individuelt DICOM-dataelement, for eksempel tekst, et tall, en persons navn eller en kode. DICOM-informasjonsobjekter kan overføres enten med eksplisitt identifikasjon av typen for hvert dataelement (eksplisitt VR) eller uten eksplisitt identifikasjon (implisitt VR); med implisitt VR må mottakerapplikasjonen bruke en DICOM-dataordbok for å søke opp formatet for hvert dataelement.

3.5. GRUNNLEGGENDE OM DICOM-KOMMUNIKASJON

Denne delen beskriver begrepen som brukes i denne samsvarerklæringen, for de som ikke er spesialister. De viktigste begrepene i samsvarerklæringen er uthevet i kursiv nedenfor. Denne delen erster etter ikke opplæring i DICOM, og mange av betydningene av DICOM-vilkårene forenkles her.

To applikasjonsenheter (enheter) som skal kommunisere med hverandre over et nettverk ved hjelp av DICOM-protokollen, må først bli enige om flere ting i løpet av et innledende "nettverkshåndtrykk". En av de to enhetene må starte en forbindelse (en tilkobling til den andre enheten) og spørre om spesifikke tjenester, informasjon og koding støttet av den andre enheten (forhandling).

DICOM spesifisører en rekke nettverkstjenester og typer informasjonsobjekter, som hver kalles en abstrakt syntax, for forhandlingen. DICOM spesifiserer også en rekke metoder for koding av data, kalt overføringssyntaxer. Forhandlingen gjør at den initierende applikasjonsenheten kan foreslå kombinasjoner av abstrakt syntaks og overføringssyntaxer som skal brukes på forbindelsen. Disse kombinasjonene kalles presentasjonskontekster. Mottakerapplikasjonsenheten aksepterer presentasjonskontekstene den støtter.

For hver presentasjonskontekst lar forbindelsesforhandlingen også enhetene å bli enige om roller – hvilken enhet som er tjenestebruker (SCU – klient), og hvilken som er tjenesteleverandør (SCP – server). Vanligvis vil enheten som initierer tilkoblingen, være SCU, dvs. at det er klientsystemet som kontakter serveren, men ikke alltid.
Forbindelsesforhandlingen gjør det også mulig å utveksle maksimal nettverkspakkestørrelse (PDU), sikkerhetsinformasjon og nettverktjenester (kalt utvidet forhandlingsinformasjon).

To applikasjonsenheter kan også kommunisere med hverandre ved å utveksle medier (for eksempel en CD-R). Siden det her ikke er mulig med forbindelsesforhandling, bruker begge en medieapplikasjonsprofil som spesifiserer "forhåndsforhandlet" medieformat for utveksling, abstrakt syntaks og overføringssyntaks.

3.6. FORKORTELSER

De følgende akronymene og forkortelsene brukes i dette dokumentet:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology (amerikansk institutt for radiologi)</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine (digital bildebehandling og kommunikasjon innenfor medisin)</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association (nasjonal organisasjon for produsenter av elektrisk utstyr)</td>
</tr>
<tr>
<td>AE</td>
<td>Applikasjonsenhet</td>
</tr>
<tr>
<td>PDU</td>
<td>Protokolldaatenhet</td>
</tr>
<tr>
<td>SCP</td>
<td>Tjenesteleverandør</td>
</tr>
<tr>
<td>SCU</td>
<td>Tjenestebrukere</td>
</tr>
<tr>
<td>SOP</td>
<td>Tjeneste/objekt-par</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol (overføringssyntaksprotokoll/Internett-protokoll)</td>
</tr>
<tr>
<td>UID</td>
<td>Unik identifikator</td>
</tr>
<tr>
<td>LEE</td>
<td>Little-endian-eksplisitt</td>
</tr>
<tr>
<td>LEI</td>
<td>Little-endian-implisitt</td>
</tr>
<tr>
<td>BEE</td>
<td>Big-endian-eksplisitt</td>
</tr>
</tbody>
</table>

3.7. REFERANSEN

<table>
<thead>
<tr>
<th>Dokument</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: Tjenesteklassespesifikasjoner, tilgjengelig gratis på http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. NETTVERK

4.1. GJENNOMFØRINGSMODELL

4.1.1. Applikasjonsdataflyt

![Diagram av applikasjonsdataflyt]

4.1.2. Funksjonell definisjon av AE-er

4.1.2.1. Funksjonell definisjon av lagringsapplikasjonsenhet

4.1.2.2. Rekkefølge på reelle aktiviteter

Figur 4.1-2
REKKFØLGEBEGRENSNINGER

Under normale arbeidsflytbetingelser gjelder rekkefølgebegrensningene i figur 4.1-2:

1. Brukeren legger inn eller oppdaterer pasient- og studieinformasjon når dette er aktuelt.
2. Brukeren tar et bilde under en studie.
3. Brukeren velger bilder fra lokalt minne via brukergrensesnittet for overføring til ekstern AE og velger knappen "DICOM Transfer" (DICOM-overføring) i applikasjonens brukergrensesnitt.
4. Applikasjonen leser pasientinformasjonen som er lagt inn for studien av brukeren, genererer DICOM-forekomster og sender valgt DICOM-forekomst til en ekstern AE.

4.2. AE-SPESIFIKASJONER

4.2.1. Spesifikasjoner for lagringsapplikasjonsenhet

4.2.1.1. SOP-klasser
Site-Rite® 8-ultralydsystemets DICOM-applikasjon har standardsamsvar for følgende SOP-klasser:

Tabell 4.2-1
SOP-klasser for AE-lagring

<table>
<thead>
<tr>
<th>SOP-klassenavn</th>
<th>SOP-klasse-UID</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultralydbilde lagring</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Secondary Capture-bilde lagring</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Ja</td>
<td>Nei</td>
</tr>
</tbody>
</table>
4.2.1.2. Forbindelsesretning

4.2.1.2.1. Generelt
Standardnavnet på DICOM-applikasjonskontekst for DICOM 3.0 blir alltid foreslått:

| Tabell 4.2-2 |
| DICOM-applikasjonskontekst for AE-lagring |
| Apkasjonskontekstnavn | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Antall forbindelser
Site-Rite® 8-ultralydsystemets DICOM-applikasjon initierer én forbindelse om gangen for hver mottaker som brukeren har aktiveren en overføringsforespørsel for. Bare én overføringsjobb vil være aktiv om gangen. Andre venter til den aktive overføringsforespørselen fullføres eller mislykkes.

| Tabell 4.2-3 |
| Antall forbindelser initert for AE-lagring |
| Maksimalt antall samtidige forbindelser | 1 |

4.2.1.2.3. Asynkronitet
Site-Rite® 8-ultralydsystemets DICOM-applikasjon støtter ikke asynkron kommunikasjon (dvs. flere utestående transaksjoner over én forbindelse).

| Tabell 4.2-4 |
| Asynkronitet som SCU for lagring |
| Maksimalt antall utestående asynkrone transaksjoner | 1 |

4.2.1.2.4. Implementerings-ID-informasjon
Implementeringsinformasjonen for denne applikasjonsenheten er:

| Tabell 4.2-5 |
| DICOM-implementeringsklasse |
| Implementeringsklasse-UID | 1.2.826.0.1.3680043.2.360.0.3.5.4 |

4.2.1.3. Retningslinje for forbindelsesinitiering

4.2.1.3.1. Aktivitet – sende bilder

4.2.1.3.1.1. Beskrivelse av og rekkefølge på aktiviteter
En bruker kan velge bilder og via applikasjonens brukergrensesnitt be om at de skal sendes til en forhåndskonfigurert mottaker. Hver forespørsel utføres umiddelbart etter at brukeren har trykket på sendeknappen, og brukeren blir varslet om statusen for overføringen.

Lagrings-AE-en forsøker å opprette en ny forbindelse for å be om en C-STORE-forespørsel. Hvis brukeren har valgt flere bilder, forhandles det en egen forbindelse for hvert bilde i sekvensiell rekkefølge.

![Diagram](image-url)

Figur 4.2-6

Rekkefølge for aktivitet – sende bilder

Den mulige rekkefølgen på interaksjonen mellom lagrings-AE-en og en ekstern AE (PACS-arkiv eller bildebehandler som støtter lagringstjenesteklasse som SCP) er illustrert på figur 4.2-6:

1. Brukeren velger ett eller flere bilder for overføring.
5. Lagrings-AE-en fortsetter å behandle neste bilde ifølge trinnene 2–4 over til alle bildene er overført.
4.2.1.3.1.2. Forslag til presentasjonskontekster
Site-Rite® 8-ultralydsystemets DICOM-aplikasjon kan foreslå en hvilken som helst av presentasjonskontekstene i tabellen nedenfor:

<table>
<thead>
<tr>
<th>Abstrakt syntaks</th>
<th>Overføringsyntaks</th>
<th>Rolle</th>
<th>Ekst. forh.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navn</td>
<td>UID</td>
<td>Navneliste</td>
<td>UID-liste</td>
</tr>
<tr>
<td>Ultralydbildelagring</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Se tabell 4.2-8</td>
<td>Se tabell 4.2-8</td>
</tr>
<tr>
<td>Secondary Capture-bildelagring</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Se tabell 4.2-8</td>
<td>Se tabell 4.2-8</td>
</tr>
</tbody>
</table>

Tabell 4.2-8
Forslag til overføringsyntaks

<table>
<thead>
<tr>
<th>Navn på overføringsyntaks</th>
<th>Overføringsyntaks-UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implisitt VR little-endian (DICOM-standard)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Eksplisitt VR little-endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Eksplisitt VR big-endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

I bildeoverføringsprosessen vil Site-Rite® 8-ultralydsystemets DICOM-applikasjon bruke den samme abstrakte syntaksen (dvs. SOP-klasse for bildeforekomsten) i flere presentasjonskontekster. Hvert par av abstrakt syntaks og overføringsyntaks er unikt, og en av de foreslåtte presentasjonskontekstene vil inneholde standard DICOM-overføringsyntaks (dvs. implisitt VR little-endian) per abstrakt syntaks. Det er alltid inkludert en presentasjonskontekst med SOP-klasse for verifisering i en forbindelseforespørsel fra lagrings-AE-en.

4.2.1.3.1.3. SOP-spesifikt samsvarende SOP-klasser for bildelagring
Alle SOP-klasser for bildelagring som støttes av lagrings-AE-en, fungerer på samme måte, unntatt der det angitt, og er beskrevet samlet i dette avsnittet.

Hva lagrings-AE-en gjør når det oppdages en statuskode i C-STORE-responsen, er oppsummert i tabellen nedenfor:

<table>
<thead>
<tr>
<th>Tjeneste-status</th>
<th>Ytterligere betydning</th>
<th>Feilkode</th>
<th>Atferd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fullført</td>
<td>Fullført</td>
<td>0000</td>
<td>SCP-en har lagret SOP-forekomsten. Hvis alle valgte SOP-forekomster i en overføringsforspørsel har statusen fullført, anses overføringen som fullført, og brukeren varsles om det.</td>
</tr>
<tr>
<td>Advarsel</td>
<td>Advarsel</td>
<td>B000-BFFF</td>
<td>Bildeoverføringen anses som fullført.</td>
</tr>
<tr>
<td>*</td>
<td>Feil</td>
<td>Enhver annen statuskode</td>
<td>SCP kunne ikke lagre forekomsten.</td>
</tr>
</tbody>
</table>

Hva lagrings-AE-en gjør under kommunikasjonssvikt, er oppsummert i tabellen nedenfor:

<table>
<thead>
<tr>
<th>Unntak</th>
<th>Atferd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidsavbrudd</td>
<td>Forbindelsens avbrytes med A-ABORT, og overføringsjobben anses som mislykket. Årsaken registreres i loggfilen.</td>
</tr>
<tr>
<td>Forbindelse avbrutt av SCP eller nettverkslaget</td>
<td>Overføringsjobben anses som mislykket. Årsaken rapporteres til brukeren via loggfilen.</td>
</tr>
</tbody>
</table>

Merk: Loggfilen kan lagres på en USB-lagringsenhet ved å trykke på "skift+ctrl+L".

Brukeren kan starte en mislykket overføring på nytt. Applikasjonen prøver ikke automatisk å sende filene som ikke ble overført, på nytt.

Innholdet i forskjellige bildeoverførings-SOP-forekomster opprettet av Site~Rite® 8 ultralydsystem DICOM samsvarer med PS 3.3 bilde-IOD-definisjonen i DICOM-standarden og er beskrevet i punkt 6.1.

4.3. KOMMUNIKASJONSPROFILER
Site~Rite® 8-ultralydsystemets DICOM-applikasjon støtter DICOM V3.0 TCP/IP-nettverkskommunikasjon som definert i del 8 av DICOM-standarden.

4.3.1. TCP/IP-stakk
Site~Rite® 8-ultralydsystemets DICOM-applikasjon overtar TCP/IP-stakken fra datatryptet den brukes på.

4.3.1.1. Støtte av fysiske medier
Site~Rite® 8-ultralydsystemets DICOM-applikasjon tar ikke hensyn til det fysiske mediet for TCP/IP, men overtar mediet fra datatryptet den brukes på.

4.4. UTVIDELSER/SPESIALISERINGER/PRIVATISERING
Ikke relevant.
4.5. KONFIGURASJON

4.5.1. AE-tittel/presentasjonadresseordning

4.5.1.1. Lokale AE-titler

4.5.1.2. Eksterne AE-titler

4.5.1.2.1. Ekstern SCP
Tabellen nedenfor beskriver konfigurasjonsvalg for ekstern SCP:

<table>
<thead>
<tr>
<th>SCP-innstillinger</th>
<th>Standard</th>
<th>Konfigurerbar</th>
<th>Konfigurasjonsvalg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tittel på lagringsapplikasjonsenhet</td>
<td>Nei</td>
<td>Ja</td>
<td>I/A</td>
</tr>
<tr>
<td>Tittel på ekstern applikasjonsenhet</td>
<td>Nei</td>
<td>Ja</td>
<td>I/A</td>
</tr>
<tr>
<td>Ekstern IP-adresse</td>
<td>Nei</td>
<td>Ja</td>
<td>I/A</td>
</tr>
<tr>
<td>Ekstern TCP-port</td>
<td>Nei</td>
<td>Ja</td>
<td>I/A</td>
</tr>
<tr>
<td>Overføringssyntaks</td>
<td>Nei</td>
<td>Ja</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Komprimering</td>
<td>Nei</td>
<td>Ja</td>
<td>Uten tap, med tap, ingen</td>
</tr>
</tbody>
</table>

4.6. STØTTE TIL UTVIDEDE TEGNSETT
Site~Rite® 8-ultralydsystemets DICOM-aplikasjon støtter følgende tegnsett:
- ISO-IR 6 (standard): Grunnleggende G0-sett
- ISO-IR 100: Latinsk alfabet nr. 1

I tillegg støtter Site~Rite® 8-ultralydsystemets DICOM-aplikasjon bruk av følgende tegnsett i gjeldende verdirepresentasjoner, for eksempel pasientens navn, studiebeskrivelse og seriebeskrivelse.
- ISO_IR 144 (ISO 8859-5:1988 latinsk/kyrillisk alfabet, tilleggssett)

5. MEDIEUTVEKSLING
Site~Rite® 8-ultralydsystemets DICOM-aplikasjon støtter ikke medielagring.
6. VEDLEGG

6.1. IOD-INNHOLD

6.1.1. SOP-forekomst(er) opprettet

Tabell 6.1-1 spesifiserer attributter for et ultralydbilde \ Secondary Capture-bilde overført av lagrings-AE-en til Site-Rite® 8-ultralydsystemets DICOM-applikasjon.

Følgende tabeller bruker en rekke forkortelser. Forkortelsene som brukes i kolonnen "Tilstedeværelse for modul", er:

<table>
<thead>
<tr>
<th>Forkortelse</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIATS</td>
<td>Verdi ikke alltid til stede (attributt sendt null lengde hvis ingen verdi er til stede)</td>
</tr>
<tr>
<td>AIATS</td>
<td>Attributt ikke alltid til stede</td>
</tr>
<tr>
<td>ALLTID</td>
<td>Alltid til stede</td>
</tr>
<tr>
<td>TOM</td>
<td>Attributt sendes uten noen verdi</td>
</tr>
</tbody>
</table>

Forkortelsene som brukes i kolonnen "Kilde":

<table>
<thead>
<tr>
<th>Forkortelse</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRUKER</td>
<td>Attributtverdikilden er fra brukerinndata</td>
</tr>
<tr>
<td>AUTO</td>
<td>Attributtverdien genereres automatisk</td>
</tr>
<tr>
<td>KONFIG</td>
<td>Attributtverdikilden er en konfigurerbar parameter</td>
</tr>
</tbody>
</table>

6.1.1.1. IOD for Secondary Capture-bilde

Tabell 6.1-1

<table>
<thead>
<tr>
<th>IE</th>
<th>Modul</th>
<th>Referanse</th>
<th>Tilstedeværelse for modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasient</td>
<td>Pasientens navn</td>
<td>Tabell 6.1-2</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Studie</td>
<td>Generell studie</td>
<td>Tabell 6.1-3</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Serie</td>
<td>Generell serie</td>
<td>Tabell 6.1-4</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Utstyr</td>
<td>SC-utstyr</td>
<td>Tabell 6.1-5</td>
<td>ALLTID</td>
</tr>
<tr>
<td>Bilde</td>
<td>Generelt bilde</td>
<td>Tabell 6.1-6</td>
<td>ALLTID</td>
</tr>
<tr>
<td></td>
<td>Bildepiksel</td>
<td>Tabell 6.1-7</td>
<td>ALLTID</td>
</tr>
<tr>
<td></td>
<td>SC-bilde</td>
<td>Tabell 6.1-8</td>
<td>ALLTID</td>
</tr>
<tr>
<td></td>
<td>SOP felles</td>
<td>Tabell 6.1-9</td>
<td>ALLTID</td>
</tr>
</tbody>
</table>

6.1.1.2. Fellesmodul

Tabell 6.1-2

<table>
<thead>
<tr>
<th>Attributtnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Verdi</th>
<th>Tilstedeværelse for verdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasientens navn</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Brukerinndata eller skriptfil. Maksimalt 64 tegn</td>
<td>ALLTID</td>
<td>BRUKER</td>
</tr>
<tr>
<td>Pasient-ID</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Brukerinndata eller skriptfil. Maksimalt 64 tegn</td>
<td>ALLTID</td>
<td>BRUKER</td>
</tr>
<tr>
<td>Pasientens fødselsdato</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Alltid tom. Null lengde</td>
<td>VIATS</td>
<td>BRUKER</td>
</tr>
<tr>
<td>Pasientens kjønn</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Brukerinndata eller skriptfil.</td>
<td>ALLTID</td>
<td>BRUKER</td>
</tr>
</tbody>
</table>
Tabell 6.1-3
GENERELL STUDIEMODUL FOR OPPRETTEDE SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributtnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Verdi</th>
<th>Tilstedeværelse for verdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studieforekomst-UID</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Generert av Site~Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Studiedato</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Alltid tom</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Studietid</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Alltid tom</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tilgangsnummer</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Alltid tom</td>
<td>VIATS</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabell 6.1-4
GENERELL SERIEMODUL FOR OPPRETTEDE SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributtnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Verdi</th>
<th>Tilstedeværelse for verdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalitet</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Serieforekomst-UID</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Generert av Site~Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. **Secondary Capture-bildemoduler**

Tabell 6.1-5
SC-UTSTYRSMODUL FOR OPPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributtnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Verdi</th>
<th>Tilstedeværelse for verdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalitet</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Konverteringstype</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabell 6.1-6
GENERELL BILDEMODUL FOR OPPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributtnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Verdi</th>
<th>Tilstedeværelse for verdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bildetype</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Generert av Site~Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Avledningsbeskrivelse</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Generert av Site~Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bildekomprimering med tap</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Generert av Site~Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Attributtnavn</td>
<td>Kode</td>
<td>VR</td>
<td>Verdi</td>
<td>Tilstedeværelse for verdi</td>
<td>Kilde</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>----</td>
<td>--</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Pikseldata</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Brukervalgte bildefiler (dvs. JPEG)</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Prøver per piksel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fotometrisk tolkning</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Planar konfigurasjon</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Rader</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kolonner</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tilordnede bit</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Lagrede bit</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Høy bit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Pikselrepresentasjon</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Generert av Site-Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabell 6.1-8

SC-BILDEMODUL FOR OPPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributtnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Verdi</th>
<th>Tilstedeværelse for verdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dato for Secondary Capture</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Bildefilens (dvs. JPEG) opprettelsesdato</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Tidspunkt for Secondary Capture</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Bildefilens (dvs. JPEG) opprettelsestidspunkt</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabell 6.1-9

SOP-FELLESMODUL FOR OPPRETTEDE SC SOP-FOREKOMSTER

<table>
<thead>
<tr>
<th>Attributtnavn</th>
<th>Kode</th>
<th>VR</th>
<th>Verdi</th>
<th>Tilstedeværelse for verdi</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spesifikt tegnsett</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>"IOS_IR 100" eller "ISO_IR_144"</td>
<td>AIATS</td>
<td>KONFIG</td>
</tr>
<tr>
<td>SOP-klasse-UID</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>"1.2.840.1008.5.1.4.1.1.7"</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>SOP-forekomst UID</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Generert av Site~Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kodeskjemadesignator</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Generert av Site~Rite® 8-ultralydsystem DICOM</td>
<td>ALLTID</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Deklaracja zgodności ze standardem DICOM —
system ultrasonograficzny Site~Rite® 8
ze standardem DICOM

Nazwa firmy: BARD Access Systems, Inc.

Nazwa produktu: System ultrasonograficzny Site~Rite® 8
ze standardem DICOM

Wersja: 1.0-rev. A-1

Numer wewnętrzny dokumentu: 1190674

Data: 20 kwietnia 2015 r.
1. DEKLARACJA ZGODNOŚCI — PODSUMOWANIE

Funkcja DICOM systemu ultrasonograficznego Site-Rite® 8 umożliwia pobieranie standardowych obrazów rastrowych w formacie JPEG z urządzenia do obrazowania ultradźwiękowego, a także generowanie instancji obrazów ultrasonograficznych w standardzie DICOM dla obrazów ultrasonograficznych oraz instancji przechwyconych obrazów wtórnych DICOM dla obrazów krzywych EKG na podstawie wybranych informacji pacjenta. Ponadto umożliwia użytkownikowi ręczne wprowadzanie informacji o pacjencie/badaniu. Zapewnia również niezbędne usługi DICOM potrzebne do przenoszenia obrazów do archiwum systemu PACS.

Tabela 1-1 przedstawia usługi sieciowe udostępniane przez aplikację DICOM systemu ultrasonograficznego Site-Rite® 8.

<table>
<thead>
<tr>
<th>Klasy obiektów SOP</th>
<th>Użytkownik usługi (SCU)</th>
<th>Dostawca usługi (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obraz ultrasonograficzny</td>
<td>Tak</td>
<td>Nie</td>
</tr>
<tr>
<td>Przechwycony obraz wtórnny</td>
<td>Tak</td>
<td>Nie</td>
</tr>
</tbody>
</table>
2. SPIS TREŚCI

1. DEKLARACJA ZGODNOŚCI — PODSUMOWANIE .. 2
2. SPIS TREŚCI... 3
3. WPROWADZENIE ... 4
 3.1. HISTORIA ZMIAN .. 4
 3.2. DOCELOWA GRUPA ODBIORCÓW .. 4
 3.3. UWAGI ... 4
 3.4. TERMINY I DEFINICJE ... 4
 3.5. PODSTAWOWE INFORMACJE O KOMUNIKACJI DICOM 6
 3.6. SKRÓTY ... 7
 3.7. ŹRÓDŁA ... 8
4. SIEĆ ... 8
 4.1. MODEL REALIZACJI .. 8
 4.1.1. Przepływ danych aplikacji .. 8
 4.1.2. Funkcjonalne definicje jednostek aplikacji ... 9
 4.1.2.1. Funkcjonalna definicja jednostki aplikacji przechowywania 9
 4.1.2.2. Kolejność operacji ... 9
 4.2. OPIS JEDNOSTKI APLIKACJI .. 10
 4.2.1. Opis jednostki aplikacji przechowywania ... 10
 4.2.1.1. Klasa obiektów SOP .. 10
 4.2.1.2. Zasady powiązania .. 10
 4.2.1.2.1. Informacje ogólne .. 10
 4.2.1.2.2. Liczba powiązań ... 10
 4.2.1.2.3. Praca asynchroniczna .. 10
 4.2.1.2.4. Informacje identyfikujące implementację .. 10
 4.2.1.3. Zasady inicjowania powiązania ... 11
 4.2.1.3.1. Działanie — wysyłanie obrazów ... 11
 4.2.1.3.1.1. Opis i kolejność działań ... 11
 4.2.1.3.1.2. Proponowane konteksty prezentacji .. 12
 4.2.1.3.1.3. Zgodność określonych obiektów SOP z klasami obiektów SOP 12
 4.2.1.3.1.4. Obsługa nośników fizycznych .. 13
 4.3. PROFILE KOMUNIKACJI .. 14
 4.3.1. Stos TCP/IP ... 14
 4.3.1.1. Obsługa nośników fizycznych ... 14
 4.4. ROZSZERZENIA/SPECJALIZACJE/PRYWATYZACJE 14
 4.5. KONFIGURACJA ... 14
 4.5.1. Nazwa jednostki aplikacji/mapowanie adresu prezentacji 14
 4.5.1.1. Nazwy lokalnych jednostek aplikacji ... 15
 4.5.1.2. Nazwy zdalnych jednostek aplikacji ... 15
 4.5.1.2.1. Zdalny dostawca klasy usługi ... 15
 4.6. OBSŁUGA ROZSZERZONYCH ZESTAWÓW ZNAKÓW 15
5. WYMIANA NOŚNIKÓW ... 15
6. ZAŁĄCZNIKI .. 16
 6.1. ZAWARTOŚĆ INFORMACJI DANYCH OBIEKTU ... 16
 6.1.1. Utworzone instancje obiektów SOP ... 16
 6.1.1.1. Informacje danych obiektów przechwyconych obrazów wtórnym 16
 6.1.1.2. Moduł wspólny .. 17
 6.1.1.3. Moduły przechwyconych obrazów wtórnym .. 18
3. WPROWADZENIE

3.1. HISTORIA ZMIAN

<table>
<thead>
<tr>
<th>Wersja dokumentu</th>
<th>Data wydania</th>
<th>Autor</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 marca 2015 r.</td>
<td>Tyler Durfee</td>
<td>Wersja początkowa</td>
</tr>
</tbody>
</table>

3.2. DOCELOWA GRUPA ODBIORCÓW

Ten dokument jest przeznaczony dla osób, które muszą rozumieć, w jaki sposób aplikacja DICOM systemu ultrasonograficznego Site−Rite® 8 zostanie zintegrowana w ich placówce opieki zdrowotnej. Obejmuje to zarówno osoby odpowiedzialne za opracowanie ogólnych zasad korzystania z sieci obrazowania i jej architektury, a także osoby przeprowadzające integrację, które muszą posiadać szczegółową wiedzę na temat funkcjonalności produktu obsługujących standard DICOM. Ten dokument zawiera podstawowe definicje dotyczące standardu DICOM, aby umożliwić wszystkim czytelnikom zrozumienie sposobu działania funkcjonalności produktu obsługujących standard DICOM. Osoby przeprowadzające integracje muszą w pełni rozumieć terminologię dotyczącą standardu DICOM, wiedzieć, w jaki sposób tabele zawarte w tym dokumencie odnoszą się do funkcjonalności produktu oraz w jaki sposób ta funkcjonalność współpracuje z innymi urządzeniami, które obsługują zgodne funkcje w standardzie DICOM.

3.3. UWAGI

Celem tej deklaracji zgodności ze standardem DICOM jest ułatwienie integracji pomiędzy aplikacją DICOM systemu ultrasonograficznego Site−Rite® 8 a innymi urządzeniami obsługującymi standard DICOM. Deklarację zgodności należy czytać i interpretować w odniesieniu do normy dotyczącej standardu DICOM. Samodzielnie standard DICOM nie gwarantuje możliwości współpracy urządzeń. Deklaracja zgodności ułatwia jednak wstępną ocenę możliwości współpracy pomiędzy różnymi aplikacjami obsługującymi zgodne funkcjonalności DICOM.

Ta deklaracja zgodności nie zastępuje procedur sprawdzania zgodności z innymi urządzeniami obsługującymi standard DICOM w celu zapewnienia prawidłowej wymiany informacji. Należy mieć na uwadze następujące kwestie:

- Porównanie różnych deklaracji zgodności stanowi pierwszy etap oceny możliwości nawiązania połączenia i współpracy pomiędzy produktem a innymi urządzeniami obsługującymi standard DICOM.
- Należy opracować odpowiednie procedury sprawdzania wymaganego poziomu współpracy z określonymi urządzeniami obsługującymi standard DICOM, zgodnie z zasadami placówki opieki zdrowotnej.

3.4. TERMINY I DEFINICJE

Poniżej podano nieformalne definicje następujących terminów używanych w tej deklaracji zgodności. Oficjalnym źródłem formalnych definicji tych terminów jest norma dotycząca standardu DICOM.

Atrybut — jednostka informacji w definicji obiektu, element danych określany znacznikiem. Informacje te mogą stanowić złożoną strukturę danych (sekwencje), składającą się z elementów danych niższego poziomu. Przykłady: identyfikator pacjenta (0010,0020), numer dostępu (0008,0050).
Dostawca klasy usługi (Service Class Provider, SCP) — rola jednostki aplikacji, która dostarcza usługę sieciową DICOM. Zazwyczaj jest to serwer, który odpowiada na żądania innej jednostki aplikacji (użytkownika klasy usługi). Przykłady: system archiwizacji i transmisji obrazów (dostawca klasy usługi przechowywania obrazu oraz dostawca klasy usługi żądania/pobierania obrazu), system informacji radiologicznych (dostawca klasy usługi listy roboczej urządzenia).

Informacje danych obiektu (Information Object Definition, IOD) — określony zestaw atrybutów, które obejmują typ obiektu danych. Nie reprezentuje określonej instancji obiektu danych, ale klasę podobnych obiektów danych, które mają takie same właściwości. Atrybuty mogą być określone jako obowiązkowe (typ 1), wymagane, ale prawdopodobnie nieznane (typ 2) lub opcjonalne (typ 3), a ponadto mogą być stosowane warunki powiązane z używaniem atrybutów (typy 1C i 2C). Przykłady: informacje danych obiektu obrazu rezonansu magnetycznego, informacje danych obiektu obrazu tomografii komputerowej, informacje danych obiektu zadania drukowania.

Instancja obiektu SOP — obiekt danych. Określone wystąpienie wymiany danych w klasie obiektu SOP. Przykłady: określony obraz ultrasonograficzny.

Jednostka aplikacji (Application Entity, AE) — punkt końcowy wymiany informacji w standardzie DICOM, w tym sieć DICOM lub oprogramowanie interfejsu nośnika, tj. oprogramowanie, które wysyła lub odbiera wiadomości lub obiekty danych DICOM. Jedno urządzenie może mieć wiele jednostek aplikacji.

Jednostka danych protokołu (Protocol Data Unit, PDU) — pakiet (część) wiadomości DICOM wysyłany do sieci. Urządzenia muszą określać maksymalny rozmiar pakietu komunikatów DICOM, jaki mogą otrzymać.

Klasa obiektu SOP (Service/Object Pair) — określenie sieci lub nośnika (usługi) danego typu danych (obiektu). Podstawowa jednostka oceny stopnia zgodności standardu DICOM. Przykłady: usługa przechowywania obrazów ultrasonograficznych, składnia kompresji, składnia transferu lub informacje pacjenta.

Kontekst aplikacji — określenie typu komunikacji pomiędzy jednostkami aplikacji. Przykład: protokół sieciowy DICOM.

Kontekst prezentacji — zestaw usług sieciowych DICOM używanych w ramach powiązania, zgodnie z ustaleniami podczas negocjacji pomiędzy jednostkami aplikacji. Obejmuje on składnie abstrakcyjne i składnie transferu.

Metoda kompresji Joint Photographic Experts Group (JPEG) — zestaw ustandaryzowanych technik kompresji obrazu, dostępnych w aplikacjach DICOM.

Moduł — zestaw atrybutów informacji danych obiektu, które są ze sobą logicznie powiązane. Przykład: moduł pacjenta obejmuje imię i nazwisko pacjenta, identyfikator pacjenta, datę urodzenia pacjenta oraz płeć pacjenta.

Nazwa jednostki aplikacji — znana na zewnątrz nazwa jednostki aplikacji, używana do identyfikacji aplikacji DICOM przez inne aplikacje DICOM w sieci.

Negocjacja — pierwsza faza nawiązywania powiązania, która umożliwia jednostkom aplikacji uzgodnienie typu wymienianych danych i sposobu ich kodowania.

Powiązanie — kanał komunikacji sieciowej ustanowiony pomiędzy jednostkami aplikacji.
Profił aplikacji nośnika — parametry kodowania i obiektów danych DICOM wymienianych za pośrednictwem nośników (np. płyt CD).

Profił bezpieczeństwa — zestaw mechanizmów, takich jak szyfrowanie, uwierzytelnianie użytkowników lub podpisy cyfrowe, wykorzystywanych przez jednostkę aplikacji w celu zapewnienia poufności, integralności i/lub dostępności wymienianych danych DICOM.

Składnia abstrakcyjna — ustalone informacje wymieniane pomiędzy aplikacjami, zazwyczaj stanowiące ekwiwalent klasy obiektu SOP (Service-Object Pair). Przykłady: klasa obiektu SOP weryfikacji, klasa obiektu SOP wyszukiwania modelu danych listy roboczej urządzenia, klasa obiektu SOP przechowywania obrazów radiografii cyfrowej.

Składnia transferu — kodowanie używane do wymiany obiektów danych i wiadomości DICOM. Przykłady: skompresowane obrazy JPEG, typ danych little endian.

Typ danych (Value Representation, VR) — typ formatu poszczególnych elementów danych DICOM, np. tekst, liczba całkowita, imię i nazwisko lub kod. Obiekty danych DICOM mogą być przesyłane z jawną identyfikacją typu każdego elementu danych (jawn typ danych VR) lub bez jawnej identyfikacji (niejawn typ danych VR). W przypadku niejawnego typu danych VR aplikacja odbierająca musi korzystać ze słownika danych DICOM w celu sprawdzenia formatu każdego elementu danych.

Unikalny identyfikator (Unique Identifier, UID) — globalnie unikalny ciąg dziesiętny z kropkami, który określa dan obiekt lub klasę obiektów. Identyfikator obiektu zgodnie z normą ISO-8824. Przykłady: unikalny identyfikator instancji badania, unikalny identyfikator klasy obiektu SOP, unikalny identyfikator instancji obiektu SOP.

Użytkownik klasy usługi (Service Class User, SCU) — rola jednostki aplikacji, która korzysta z usługi sieciowej DICOM, zazwyczaj klient. Przykłady: urządzenie do obrazowania (użytkownik klasy usługi przechowywania obrazu oraz użytkownik klasy usługi listy roboczej urządzenia), stacja robocza do obrazowania (użytkownik klasy usługi żądania/pobierania obrazu).

Znacznik — 32-bitowy identyfikator elementu danych, reprezentowany jako para czterocyfrowych liczb szesnastkowych; grupa i element. Jeżeli liczba grupy jest liczbą nieparzystą, używany jest znacznik elementu danych prywatnych (określony do producenta). Przykłady: (0010,0020) [identyfikator pacjenta], (07FE,0010) [dane pikseli], (0019,0210) [element danych prywatnych].

3.5. PODSTAWOWE INFORMACJE O KOMUNIKACJI DICOM

W niniejszej sekcji wyjaśniono terminologię używaną w tej deklaracji zgodności dla osób niebędących specjalistami w dziedzinie. Główne pojęcia używane w deklaracji zgodności oznaczono poniżej kursywą. Ta sekcja nie zastępuje szkolenia w zakresie komunikacji DICOM. Przedstawione w niej objaśnienia terminów związanych ze standardem DICOM są znacznie uproszczone.

Dwie jednostki aplikacji (urządzenia), które chcą nawiązać połączenie za pośrednictwem sieci przy użyciu protokołu DICOM muszą uzgodnić określone parametry w początkowej fazie nawiązywania połączenia sieciowego. Jedno z tych dwóch urządzeń musi zapoznać powiązanie (połączenie z drugim urządzeniem) i sprawdzić, czy to drugie urządzenie obsługuje określone usługi, informacje i typy szyfrowania (negocjacja).

W każdym kontekście prezentacji negocjacja powiązania umożliwia urządzeniom uzgodnienie ich ról — użytkownika klasy usługi (SCU — klienta) oraz dostawcy klasy usługi (SCP — serwera). Zazwyczaj urządzenie inicjujące połączenie jest użytkownikiem klasy usługi, czyli system klienta wywołuje serwer, jednak występują wyjątki od tej zasady.

Negocjacja powiązania umożliwia wymianę pakietu danych (PDU) o maksymalnym rozmiarze, informacji dotyczących bezpieczeństwa oraz opcji usług sieciowych (nazywanych informacjami rozszerzonej negocjacji).

Dwie jednostki aplikacji mogą się ze sobą komunikować za pomocą nośników (np. płyt CD-R). Ponieważ negocjacja powiązania nie jest możliwa, obie jednostki używają profilu aplikacji nośnika, który określa wstępnie uzgodniony format wymiany nośników, składnię abstrakcyjną i składnię transferu.

3.6. SKRÓTY

W dokumencie używane są następujące skróty i akronimy:

<table>
<thead>
<tr>
<th>Skrót</th>
<th>Oznaczenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>Amerykańskie Kolegium Radiologii (American College of Radiology)</td>
</tr>
<tr>
<td>DICOM</td>
<td>Obrazowanie cyfrowe i wymiana obrazów w medycynie (Digital Imaging and Communications in Medicine)</td>
</tr>
<tr>
<td>NEMA</td>
<td>Krajowe stowarzyszenie producentów sprzętu elektrycznego (National Electrical Manufacturers Association)</td>
</tr>
<tr>
<td>AE</td>
<td>Jednostka aplikacji</td>
</tr>
<tr>
<td>PDU</td>
<td>Jednostka danych protokołu</td>
</tr>
<tr>
<td>SCP</td>
<td>Dostawca klasy usługi</td>
</tr>
<tr>
<td>SCU</td>
<td>Użytkownik klasy usługi</td>
</tr>
<tr>
<td>SOP</td>
<td>Obiekt SOP</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Protokół kontroli transmisji/protokół internetowy (Transmission Control Protocol/Internet Protocol)</td>
</tr>
<tr>
<td>UID</td>
<td>Unikalny identyfikator</td>
</tr>
<tr>
<td>LEE</td>
<td>Jawny typ danych little endian (Little Endian Explicit)</td>
</tr>
<tr>
<td>LEI</td>
<td>Niejawny typ danych little endian (Little Endian Implicit)</td>
</tr>
<tr>
<td>BEE</td>
<td>Jawny typ danych big endian (Big Endian Explicit)</td>
</tr>
</tbody>
</table>
3.7. ŹRÓDŁA

| DICOM PS3.4 | DICOM PS3.4: Service Class Specifications (Dane techniczne klasy usługi) — dokument dostępny nieodpłatnie pod adresem http://medical.nema.org/ |

4. SIEĆ

4.1. MODEL REALIZACJI

4.1.1. Przepływ danych aplikacji

Jednostka aplikacji przechowywania aplikacji DICOM systemu ultrasonograficznego Site~Rite® 8 wysyła obrazy do zdalnej jednostki aplikacji. Ten proces jest realizowany za pomocą funkcji wysyłania obrazów. Funkcja wysyłania obrazów jest uruchamiana na żądanie użytkownika w przypadku każdego ukończonego badania lub wybranych obrazów. Po włączeniu funkcji przez użytkownika za pośrednictwem interfejsu użytkownika aplikacji DICOM systemu ultrasonograficznego Site~Rite® 8 każdy oznaczony zestaw obrazów może być natychmiast zapisany we wstępnie określonej lokalizacji docelowej.

Interfejs obsługiujący standard DICOM

Rys. 4.1-1
Schemat przepływu danych aplikacji
4.1.2. Funkcjonalne definicje jednostek aplikacji

4.1.2.1. Funkcjonalna definicja jednostki aplikacji przechowywania

Użytkownik wybiera zestaw obrazów przechowywanych lokalnie w aplikacji DICOM systemu ultrasonograficznego Site-Rite® 8, a następnie naciska przycisk umożliwiający rozpoczęcie przesyłu danych w standardzie DICOM (przycisk „Wyślij”), aby uruchomić jednostkę aplikacji przechowywania. Żądanie powiązania jest wysyłane do wstępnie skonfigurowanej docelowej jednostki aplikacji, a po pomyślnym uzgodnieniu kontekstu prezentacji rozpoczyna się przesył obrazu. Jeżeli nie można ustanowić powiązania, użytkownik natychmiast otrzymuje powiadomienie o błędzie, a szczegółowe informacje o błędzie są rejestrowane w pliku dziennika. Domyślnie jednostka aplikacji przechowywania nie będzie podejmować prób ponownego ustanowienia powiązania w przypadku wystąpienia błędu.

4.1.2.2. Kolejność operacji

Rys. 4.1-2

OGRANICZENIA KOLEJNOŚCI OPERACJI

W zwyczajnych warunkach przepływu pracy mają zastosowanie ograniczenia kolejności operacji przedstawione na rys. 4.1-2:

1. Użytkownik wprowadza dane pacjenta i dane badania
2. Użytkownik przechwytuje obraz
3. Użytkownik wybiera obraz i go wysyła
4. Jednostka przechowywania otrzymuje obraz

Jednostka przechowywania

Oprogramowanie do zarządzania obrazami
Archiwum systemu PACS

1. Użytkownik wprowadza lub aktualizuje dane pacjenta i dane badania w stosownych przypadkach.
2. Użytkownik przechwytuje obraz podczas badania.
3. Użytkownik wybiera obrazy z lokalnej jednostki przechowywania za pośrednictwem interfejsu do przesyłania danych do zdalnej jednostki aplikacji i wybiera przycisk DICOM Transfer (Przesył w standardzie DICOM) w interfejsie użytkownika aplikacji.
4. Aplikacja odczytuje dane pacjenta wprowadzone przez użytkownika w ramach badania, generuje instancje obrazów w standardzie DICOM, a następnie wysyła wybrane instancje obrazów w standardzie DICOM do zdalnej jednostki aplikacji.
4.2. OPIS JEDNOSTKI APLIKACJI

4.2.1. Opis jednostki aplikacji przechowywania

4.2.1.1. Klasy obiektów SOP

Aplikacja DICOM systemu ultrasonograficznego Site~Rite® 8 zapewnia standardową zgodność z następującymi klasami obiektów SOP:

<table>
<thead>
<tr>
<th>Nazwa klasy obiektu SOP</th>
<th>Unikalny identyfikator klasy obiektu SOP</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostka przechowywania obrazów ultrasonograficznych</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Tak</td>
<td>Nie</td>
</tr>
<tr>
<td>Jednostka przechowywania przechwyconych obrazów wtórnych</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Tak</td>
<td>Nie</td>
</tr>
</tbody>
</table>

4.2.1.2. Zasady powiązania

4.2.1.2.1. Informacje ogólne

Nazwa kontekstu aplikacji DICOM dla standardu DICOM 3.0 jest zawsze proponowana:

| Nazwa kontekstu aplikacji | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Liczba powiązań

Aplikacja DICOM systemu ultrasonograficznego Site~Rite® 8 inicjuje jedno powiązanie w danym momencie dla każdej lokalizacji docelowej, dla której przetwarzane jest żądanie przesyłu wysłane przez użytkownika. Tyko jedna operacja przesyłania jest aktywna w danym momencie, a pozostałe oczekują na zakończenie lub przerwanie aktywnego żądania przesyłu.

| Maksymalna liczba jednoczesnych powiązań | 1 |

4.2.1.2.3. Praca asynchroniczna

Aplikacja DICOM systemu ultrasonograficznego Site~Rite® 8 nie obsługuje komunikacji asynchronicznej (czyli wielu oczekujących transakcji w ramach jednego powiązania).

| Maksymalna liczba oczekujących asynchronicznych transakcji | 1 |

4.2.1.2.4. Informacje identyfikujące implementację

Informacje dotyczące implementacji w przypadku tej jednostki aplikacji:
4.2.1.3. Zasady inicjowania powiązania

4.2.1.3.1. Działanie — wysyłanie obrazów

4.2.1.3.1.1. Opis i kolejność działań

Użytkownik może wybierać obrazy i inicjować żądanie wysłania ich do wstępnie skonfigurowanej lokalizacji docelowej za pośrednictwem interfejsu użytkownika aplikacji. Każde żądanie jest wykonywane natychmiast po naciśnięciu przycisku wysyłania, a użytkownik jest informowany o stanie przesyłu.

Gdy transfer DICOM zostanie uruchomiony przez użytkownika, jednostka aplikacji przechowywania aplikacji DICOM systemu ultrasonograficznego Site-Rite® 8 próbuje ustanowić powiązanie ze wstępnie skonfigurowanym serwerem docelowym i inicjuje żądanie C-STORE w celu zapisania wybranych obrazów. Po ustanowieniu powiązania ze zdalną jednostką aplikacji wszystkie wybrane instancje będą kolejno przesyłane za pośrednictwem otwartego powiązania. Informacje dotyczące stanu przesyłu są przekazywane użytkownikowi za pośrednictwem interfejsu użytkownika. Jeżeli odpowiedź C-STORE z aplikacji zdalnej zawiera status inny niż „Powodzenie” lub „Ostrzeżenie”, powiązanie jest zrywane, a użytkownik otrzymuje powiadomienie o niepowodzeniu. Użytkownik może ponownie uruchomić operację przesyłu w dowolnym momencie.

Jednostka aplikacja przechowywania próbuje ustanowić nowe powiązanie, aby wysłać żądanie C-STORE. Jeżeli użytkownik wybrał wiele obrazów, oddzielne powiązanie jest negocjowane kolejno dla każdego obrazu.

![Rys. 4.2-6](image-url)

Kolejność działań — wysyłanie obrazów
Możliwą kolejność interakcji pomiędzy jednostką aplikacji przechowywania a zdalną jednostką przechowywania (archiwum systemu PACS lub oprogramowanie do zarządzania obrazami obsługujące klasę usługi przechowywania jako dostawca klasy usługi) przedstawiono na rys. 4.2-6:

1. Użytkownik wybiera jeden lub większą liczbę obrazów do przesłania.
2. W przypadku każdego wybranego obrazu jednostka aplikacji przechowywania otwiera powiązanie ze zdalną jednostką aplikacji.
3. Jeden obraz wybrany przez użytkownika jest przesyłany do zdalnej jednostki aplikacji przy użyciu żądania C-STORE, a zdalna jednostka aplikacji wysyła odpowiedź C-STORE (stan powodzenia).
5. Jednostka aplikacji przechowywania przetwarza kolejno każdy obraz według kroków 2–4 opisanych powyżej, aż wszystkie obrazy zostaną przesłane.

4.2.1.3.1.2. Proponowane konteksty prezentacji

Aplikacja DICOM systemu ultrasonograficznego Site~Rite® 8 może proponować dowolny z kontekstów prezentacji wymienionych w tabeli poniżej:

<table>
<thead>
<tr>
<th>Nazwa składni transferu</th>
<th>Unikalny identyfikator składni transferu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niejawny typ danych VR little endian (domyślny format w standardzie DICOM)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Jawny typ danych VR little endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Jawny typ danych VR big endian</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nazwa składni transferu</th>
<th>Unikalny identyfikator składni transferu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratna konwersja JPEG</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>Bezstratna konwersja JPEG</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>
Podczas przenoszenia jednego obrazu aplikacja DICOM systemu ultrasonograficznego Site−Rite® 8 użyje tej samej składni abstrakcyjnej (np. klasy obiektu SOP instancji obrazu) w wielu kontekstach prezentacji. Każda para składni abstrakcyjnej i składni transferu jest unikalna, a jeden z zaproponowanych kontekstów prezentacji będzie zawierał domyślną składnię transferu w standardzie DICOM (czyli niejawny typ danych VR little endian) na składnię abstrakcyjną. Żądanie powiązania wysyłane przez jednostkę aplikacji przechowywania zawsze zawiera kontekst prezentacji.

4.2.1.3.1.3. Zgodność określonych obiektów SOP z klasami obiektów SOP przechowywania obrazu

Wszystkie klasy obiektów SOP przechowywania obrazów obsługiwane przez jednostkę aplikacji przechowywania zachowują się w taki sam sposób, poza wskazanymi wyjątkami. Wszystkie klasy opisano w tym rozdziale.

Na podstawie klasy obiektu SOP przechowywania wybranej przez użytkownika instancji obrazu jednostka aplikacji przechowywania wysyła żądanie powiązania do zdalnej jednostki aplikacji z wieloma kontekstami prezentacji, z których każdy zawiera inną składnię transferu obsługiwany przez jednostkę aplikacji przechowywania. Jeżeli żaden z kontekstów prezentacji odpowiadających klasie obiektu SOP przechowywania przetwarzanej instancji wybranego obrazu nie zostanie zaakceptowany, użytkownik zostanie poinformowany o wystąpieniu błędu.

Jeżeli zdalna jednostka aplikacji akceptuje wiele kontekstów prezentacji dla tej samej składni abstrakcyjnej, jednostka aplikacji przechowywania domyślnie wybiera kontekst prezentacji na podstawie wybranego obrazu (np. ultrasonograficznego lub przechwyconego obrazu wtórnego) przed rozpoczęciem procesu C_STORE.

Zachowanie jednostki aplikacji przechowywania po odebraniu kodu stanu w odpowiedzi C-STORE podsumowano w tabeli poniżej:

<table>
<thead>
<tr>
<th>Usługa Stan</th>
<th>Dodatkowe znaczenie</th>
<th>Kod błędu</th>
<th>Zachowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powodzenie</td>
<td>Powodzenie</td>
<td>0000</td>
<td>Instancja obiektu SOP została pomyślnie zapisana przez dostawcę klasy usługi. Jeżeli wszystkie wybrane instancje obiektów SOP w żądaniu przesyłu otrzymają stan powodzenia, przesył jest uznawany za zakończony pomyślnie, a użytkownik otrzymuje odpowiednie powiadomienie.</td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Ostrzeżenie</td>
<td>B000-BFFF</td>
<td>Przesył obrazu jest uznawany za pomyślny.</td>
</tr>
<tr>
<td>*</td>
<td>Błąd</td>
<td>Dowolny inny kod stanu</td>
<td>Instancja nie została zapisana przez dostawcę klasy usługi.</td>
</tr>
</tbody>
</table>
Zachowanie jednostki aplikacji przechowywania w przypadku błędu komunikacji podsumowano w tabeli poniżej:

<table>
<thead>
<tr>
<th>Wyjątek</th>
<th>Zachowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit czasu</td>
<td>Powiązanie jest przerwane przy użyciu polecenia A-ABORT, a operacja przesyłu jest uznawana za zakończoną niepowodzeniem. Powód jest rejestrowany w pliku dziennika.</td>
</tr>
<tr>
<td>Powiązanie przerwane przez dostawcę klasy usługi lub warstwę sieciową</td>
<td>Operacja przesyłu jest uznawana za zakończoną niepowodzeniem. Powód jest rejestrowany w pliku dziennika dla użytkownika.</td>
</tr>
</tbody>
</table>

Uwaga: Plik dziennika można zapisać na urządzeniu pamięci masowej za pomocą kombinacji klawiszy „Shift+Ctrl+L”.

Użytkownik może ponownie uruchomić nieudany przesył. Aplikacja nie podejmuje automatycznie próby ponownego przesłania plików, których nie udało się wysłać.

Zawartość różnych instancji obiektów SOP przechowywania obrazów utworzonych przez aplikację DICOM systemu ultrasonograficznego Site–Rite® 8 jest zgodna z definicją informacji danych obiektu PS 3.3 standardu DICOM. Opisano ją w punkcie 6.1.

4.3. PROFILE KOMUNIKACJI
Aplikacja DICOM systemu ultrasonograficznego Site–Rite® 8 obsługuje protokół komunikacji sieciowej TCP/IP zgodny ze standardem DICOM V3.0, jak opisano w części 8 normy dotyczącej standardu DICOM.

4.3.1. Stos TCP/IP
Aplikacja DICOM systemu ultrasonograficznego Site–Rite® 8 dziedziczy stos TCP/IP z systemu komputerowego, na którym jest wykonywana.

4.3.1.1. Obsługa nośników fizycznych
Nośnik fizyczny, na którym wykonywany jest protokół TCP/IP nie wpływa na aplikację DICOM systemu ultrasonograficznego Site–Rite® 8, która dziedziczy nośnik z systemu komputerowego, na którym jest wykonywana.

4.4. ROZSZERZENIA/SPECJALIZACJE/PRYWATYZACJE
Nie dotyczy.

4.5. KONFIGURACJA

4.5.1. Nazwa jednostki aplikacji/mapowanie adresu prezentacji
Nie są podawane żadne domyślne nazwy jednostek aplikacji. Należy skonfigurować nazwy lokalnych i zdalnych jednostek aplikacji wraz z adresami hosta serwera zdalnego i numerami portu. Skonfigurowana nazwa lokalnej jednostki aplikacji i dane połączenia zdalnego są przechowywane w systemie do przyszłego wykorzystania przez jednostkę aplikacji przechowywania.
4.5.1.1. Nazwy lokalnych jednostek aplikacji
Można skonfigurować tylko jedną nazwę lokalnej jednostki aplikacji dla jednostki aplikacji przechowywania. Użytkownik może modyfikować te ustawienia konfiguracyjne.

4.5.1.2. Nazwy zdalnych jednostek aplikacji
Aplikacja DICOM systemu ultrasonograficznego Site~Rite® 8 umożliwia konfigurację tylko jednej zdalnej jednostki aplikacji. Podczas instalacji należy skonfigurować nazwę zdalnej jednostki aplikacji, adres hosta serwera zdalnego (np. adres IP) oraz numer portu. Użytkownik może zmienić ustawienia konfiguracyjne zdalnej jednostki aplikacji, adresu hosta i numeru portu w dowolnym momencie.

4.5.1.2.1. Zdalny dostawca klasy usługi
W tabeli poniżej przedstawiono opcje konfiguracji zdalnego dostawcy klasy usługi:

<table>
<thead>
<tr>
<th>Tabela 4.5-1 Tabela parametrów konfiguracji zdalnego dostawcy klasy usługi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ustawienia dostawcy klasy usługi</td>
</tr>
<tr>
<td>Nazwa jednostki aplikacji przechowywania</td>
</tr>
<tr>
<td>Nazwa zdalnej jednostki aplikacji</td>
</tr>
<tr>
<td>Zdalny adres IP</td>
</tr>
<tr>
<td>Zdalny port TCP</td>
</tr>
<tr>
<td>Składnia transferu</td>
</tr>
<tr>
<td>Kompresja</td>
</tr>
</tbody>
</table>

4.6. OBSŁUGA ROZSZERZONYCH ZESTAWÓW ZNAKÓW
Aplikacja DICOM systemu ultrasonograficznego Site~Rite® 8 obsługuje następujące zestawy znaków:
- ISO-IR 6 (domyślny): podstawowy zestaw G0
- ISO-IR 100: alfabet łaciński nr 1
Ponadto aplikacja DICOM systemu ultrasonograficznego Site~Rite® 8 obsługuje następujące zestawy znaków w typach danych, takich jak imię i nazwisko pacjenta, opis badania i opis serii.
- ISO_IR 144 (zestaw uzupełniający alfabetu łacińskiego/cyrilicy zgodny z normą ISO 8859-5:1988)

5. WYMIANA NOŚNIKÓW
Aplikacja DICOM systemu ultrasonograficznego Site~Rite® 8 nie obsługuje nośników przechowywania.
6. ZAŁĄCZNIKI

6.1. ZAWARTOŚĆ INFORMACJI DANYCH OBIEKTU

6.1.1. Utworzone instancje obiektów SOP

W tabeli 6.1-1 podano atrybuty obrazów ultradźwiękowych/przechwyconych obrazów wtórnych przesyłanych za pośrednictwem jednostki aplikacji przechowywania aplikacji DICOM systemu ultrasonograficznego Site-Rite®.

W tabeli użyto różnych skrótów. Skróty używane w kolumnie „Obecność…”:

WNZO	Wartość nie zawsze obecna (atrybut wysyłany z zerową długością, jeżeli żadna wartość nie jest obecna)
ANZO	Atrybut nie zawsze obecny
ZAWSZE	Zawsze obecny
PUSTY	Atrybut wysyłany bez wartości

Skróty używane w kolumnie „Źródło”:

UŻYTKOWNIK	Źródłem wartości atrybutu są dane wprowadzone przez użytkownika
AUTO	Wartość atrybutu jest generowana automatycznie
KONFIG	Źródłem wartości atrybutu jest parametr, który można konfigurować

6.1.1.1. Informacje danych obiektów przechwyconych obrazów wtórnych

| Tabela 6.1-1 |
| INFORMACJE OBIEKTÓW DANYCH DLA UTWORZONYCH INSTANCJI OBIEKTÓW SOP OBRAZÓW ULTRASONOGRAFICZNYCH I PRZECHWYCONYCH OBRAZÓW WTÓRNYCH |
Obiekt danych	Moduł	Oznaczenie	Obecnoscí modulu
Pacjent	Imię i nazwisko pacjenta	Tabela 6.1-2	ZAWSZE
Badanie	Informacje ogólne o badaniu	Tabela 6.1-3	ZAWSZE
Seria	Informacje ogólne o serii	Tabela 6.1-4	ZAWSZE
Sprzęt	Sprzęt, na którym przechwycono obraz wtórný	Tabela 6.1-5	ZAWSZE
Obraz	Informacje ogólne o obrazie	Tabela 6.1-6	ZAWSZE
Liczba pikseli obrazu	Tabela 6.1-7	ZAWSZE	
Przechwycony obraz wtórný	Tabela 6.1-8	ZAWSZE	
Wspólny obiekt SOP	Tabela 6.1-9	ZAWSZE	
6.1.1.2. Moduł wspólny

Tabela 6.1-2
MODUŁ PACJENTA UTWORZONYCH INSTANCJI OBIEKTÓW SOP

<table>
<thead>
<tr>
<th>Nazwa atrybutu</th>
<th>Znacznik</th>
<th>Typ danych</th>
<th>Wartość</th>
<th>Obecność wartości</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imię i nazwisko pacjenta</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Dane wprowadzone przez użytkownika lub plik skryptu. Maksymalnie 64 znaki</td>
<td>ZAWSZE</td>
<td>UŻYTKOWNIK</td>
</tr>
<tr>
<td>Identyfikator pacjenta</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Dane wprowadzone przez użytkownika lub plik skryptu. Maksymalnie 64 znaki</td>
<td>ZAWSZE</td>
<td>UŻYTKOWNIK</td>
</tr>
<tr>
<td>Data urodzenia pacjenta</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Zawsze pusty. Zerowa długość</td>
<td>WNZO</td>
<td>UŻYTKOWNIK</td>
</tr>
<tr>
<td>Płeć pacjenta</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Dane wprowadzone przez użytkownika lub plik skryptu</td>
<td>ZAWSZE</td>
<td>UŻYTKOWNIK</td>
</tr>
</tbody>
</table>

Tabela 6.1-3
MODUŁ OGÓLNYCH INFORMACJI O BADANIU UTWORZONYCH INSTANCJI OBIEKTÓW SOP

<table>
<thead>
<tr>
<th>Nazwa atrybutu</th>
<th>Znacznik</th>
<th>Typ danych</th>
<th>Wartość</th>
<th>Obecność wartości</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unikalny identyfikator instancji badania</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Data badania</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Zawsze pusty</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Godzina badania</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Zawsze pusty</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Numer dostępu</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Zawsze pusty</td>
<td>WNZO</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabela 6.1-4
MODUŁ OGÓLNYCH INFORMACJI O SERII UTWORZONYCH INSTANCJI OBIEKTÓW SOP

<table>
<thead>
<tr>
<th>Nazwa atrybutu</th>
<th>Znacznik</th>
<th>Typ danych</th>
<th>Wartość</th>
<th>Obecność wartości</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urządzenie</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Unikalny identyfikator instancji serii</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
6.1.1.3. Moduły przechwyconych obrazów wtórnich

Tabela 6.1-5
MODUŁ SPRZĘTU, NA KTÓRYM PRZECHWYCONO OBRAZ WTÓRNY UTWORZONYCH INSTANCJI OBIEKTÓW SOP

<table>
<thead>
<tr>
<th>Nazwa atrybutu</th>
<th>Znacznik</th>
<th>Typ danych</th>
<th>Wartość</th>
<th>Obecność wartości</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urządzenie</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Typ konwersji</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabela 6.1-6
MODUŁ OGÓLNYCH INFORMACJI O OBRAZIE UTWORZONYCH INSTANCJI OBIEKTÓW SOP

<table>
<thead>
<tr>
<th>Nazwa atrybutu</th>
<th>Znacznik</th>
<th>Typ danych</th>
<th>Wartość</th>
<th>Obecność wartości</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ obrazu</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Opis derywacji</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Bezstratna kompresja obrazu</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabela 6.1-7
MODUŁ LICZBY PIKSELI OBRAZU UTWORZONYCH INSTANCJI OBIEKTÓW SOP

<table>
<thead>
<tr>
<th>Nazwa atrybutu</th>
<th>Znacznik</th>
<th>Typ danych</th>
<th>Wartość</th>
<th>Obecność wartości</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dane dotyczące liczby pikseli</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Pliki obrazu wybrane przez użytkownika (np. JPEG)</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Próbki na piksel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Interpretacja fotometryczna</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Nazwa atrybutu</td>
<td>Znacznik</td>
<td>Typ danych</td>
<td>Wartość</td>
<td>Obecność wartości</td>
<td>Źródło</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Konfiguracja planarna</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Generowany przez system ultrasonograficzny Site–Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Wiersze</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Generowany przez system ultrasonograficzny Site–Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kolumny</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Generowany przez system ultrasonograficzny Site–Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Przydzielone bity</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Generowany przez system ultrasonograficzny Site–Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Przechowywane bity</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Generowany przez system ultrasonograficzny Site–Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Wysoka liczba bitów</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Generowany przez system ultrasonograficzny Site–Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Reprezentacja pikseli</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Generowany przez system ultrasonograficzny Site–Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabela 6.1-8
MODUŁ PRZECHWYCONEGO OBRAZU WTÓRNego UTWorzonyCH INSTANCJI OBIEKTów SOP

<table>
<thead>
<tr>
<th>Nazwa atrybutu</th>
<th>Znacznik</th>
<th>Typ danych</th>
<th>Wartość</th>
<th>Obecność wartości</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data przechwycenia obrazu wtórnego</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Data utworzenia pliku obrazu (np. JPEG)</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Godzina przechwycenia obrazu wtórnego</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Godzina utworzenia pliku obrazu (np. JPEG)</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabela 6.1-9
MODUŁ WSPÓLNEGO OBIEKTu SOP UTWorzonyCH INSTANCJI OBIEKTów SOP

<table>
<thead>
<tr>
<th>Nazwa atrybutu</th>
<th>Znacznik</th>
<th>Typ danych</th>
<th>Wartość</th>
<th>Obecność wartości</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Określony zestaw znaków</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>„IOS_IR 100” lub „ISO_IR_144”</td>
<td>ANZO</td>
<td>KONFIG</td>
</tr>
<tr>
<td>Unikalny identyfikator klasy obiektu SOP</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>„1.2.840.10008.5.1.4.4.1.1.7”</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Unikalny identyfikator instancji obiektu SOP</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
<tr>
<td>Oznaczenie systemu kodowania</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Generowany przez system ultrasonograficzny Site~Rite® 8 ze standardem DICOM</td>
<td>ZAWSZE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Producent:
Bard Access Systems, Inc.
605 North 5600 West
Salt Lake City, UT 84116
Stany Zjednoczone

Nr telefonu: 1-801-522-5000
Dział obsługi klienta: 1-800-545-0890
Dział obsługi technicznej/klinicznej: 1-800-443-3385
Faks: 1-801-522-4948
www.bardaccess.com

Bard i Site~Rite są znakami towarowymi i/lub zastrzeżonymi znakami towarowymi firmy C. R. Bard, Inc. Wszystkie pozostałe znaki towarowe stanowią własność odpowiednich podmiotów.

© 2015 C. R. Bard, Inc. Wszelkie prawa zastrzeżone.

Zmontowano w Stanach Zjednoczonych
DICOM megfelelőségi nyilatkozat
a Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása

Cég neve: BARD Access Systems, Inc.

Termék neve: Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása

Verzió: 1.0-rev. A-1

Belső dokumentumszám: 1190674

1. A MEGFELELŐSÉGI NYILATKOZAT ÖSSZEFOGLALÁSA

A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása az ultrahangkészülékből érkező, szabványos JPEG-raszterképek fogadására alkalmas. A kiválasztott betegadatok alapján az EKG-hullámformaképek támogatásához DICOM-szabvány szerinti példányokat és másodlagosan rögzített DICOM-képeket hoz létre az ultrahangképek ből. Emellett a betegekre és a vizsgálatokra vonatkozó adatok felhasználó általi manuális bevitelét is lehetővé teszi. A szükséges DICOM-szolgáltatásokat alkalmazva végrehajtja a képek PACS-archívumba történő átvitelét.

Az 1-1. táblázatban a Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása hálózati szolgáltatásainak áttekintése látható.

<table>
<thead>
<tr>
<th>SOP-osztályok</th>
<th>Szolgáltatás felhasználója (SCU)</th>
<th>Szolgáltató (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átvitel</td>
<td>Ultrahangkép</td>
<td>Igen</td>
</tr>
<tr>
<td>Másodlagos képrögzítés</td>
<td>Igen</td>
<td></td>
</tr>
</tbody>
</table>
2. TARTALOMJEGYZÉK

1. A MEGFELELŐSÉGI NYILATKOZAT ÖSSZEFoglalása .. 2
2. TARTALOMJEGYZÉK ... 3
3. BEVEZETÉS ... 4
 3.1. MÓDISITÁSOK JEGYZÉKE ... 4
 3.2. CÉLKÖZÖNSÉG ... 4
 3.3. MEGJEGYZÉSEK .. 4
 3.4. KIFEJEZÉSEK ÉS MAGYARÁZATUK .. 4
 3.5. A DICOM-ADATÁTVITEL ALAPJAI ... 6
 3.6. RÖVIDÍTÉSEK .. 7
 3.7. SZABVÁNYOK .. 7
4. A HÁLOZAT FELÉPÍTÉSE .. 8
4.1. MŰKÖDÉSI MODELL ... 8
 4.1.1. Adatáramlás az alkalmazások között ... 8
 4.1.2. Az alkalmazásentrítésok funkcionális ismertetése 8
 4.1.2.1. A tároló alkalmazásentrítés funkcionális ismertetése 8
 4.1.2.2. A rendszereknél elvégzendő tevékenységek ... 9
 4.2. AZ ALKALMAZASENTITÁS JELLEMZŐI ... 9
 4.2.1. Tároló alkalmazásentrítés jellemezői ... 9
 4.2.1.1. SOP-osztályok ... 9
 4.2.1.2. Hozzáféréselemi irányelvek .. 10
 4.2.1.2.1. Általános .. 10
 4.2.1.2.2. Hozzáféréselemek száma .. 10
 4.2.1.2.3. Aszinkron műveletek .. 10
 4.2.1.2.4. Alkalmazásazonosító információ ... 10
 4.2.1.3. Hozzáféréselem-kérdőjelezési irányelv .. 10
 4.2.1.3.1. Tevékenység – képküldés .. 10
 4.2.1.3.1.1. Tevékenységek ismertetése és sorrendje 10
 4.2.1.3.1.2. Ajánlott megjelenítési környezet .. 12
 4.2.1.3.1.3. SOP-specifikus megfelelőség – képtároló SOP-osztályok 12
 4.3. ADATÁTVITELI PROFILOK ... 13
 4.3.1. TCP/IP köteg ... 13
 4.3.1.1. Fizikai adathordozók támogatása .. 14
 4.4. BÖVÍTÉSEK / SPECIÁLIS KIALAKÍTÁS / TESTRESZABÁS 14
 4.5. KONFIGURÁCIÓ .. 14
 4.5.1. Alkalmazásentrítés-név / prezentációs-hozzárendelés 14
 4.5.1.1. Helyi alkalmazásentrítés-nevek .. 14
 4.5.1.2. Távoli alkalmazásentrítés-nevek .. 14
 4.5.1.2.1. Távoli SCP .. 14
 4.6. KIBÖVÍTETT KARACTERKÉSZLETEK TÁMOGATÁSA 15
5. MÉDIATÁROLÁS .. 15
6. FÜGGELÉKEK .. 15
 6.1. IOD-TARTALOM ... 15
 6.1.1. Létrehozott SOP-példány(ok) ... 15
 6.1.1.1. Másodlagos képrőgzítő IOD .. 15
 6.1.1.2. Közös modul ... 16
 6.1.1.3. Másodlagos képrőgzítő modulok ... 16
3. BEVEZETÉS

3.1. MÓDOSÍTÁSOK JEGYZÉKE

Dokumentumverzió	Kiadás dátuma	Szerző	Megnevezés
1.0 | 2015. március 24. | Tyler Durfee | Első verzió

3.2. CÉLKÖZÖNSÉG

A dokumentum célközönségét olyan szakemberek alkotják, akiknek behatóan meg kell ismerniük a Site~Rite® 8 ultrahangrendszer DICOM-alkalmazásának egészségügyi intézmények rendszereibe való integrálásának módját. Ide tartoznak az átfogó képalkotási irányelvekért és architektúráért felelős személyek, illetve azok, akiknek az integrálás során betöltött szerepük miatt alaposan ismerniük kell a DICOM-funkciókat. A dokumentumban szerepel néhány alapvető DICOM-funkció meghatározása is, hogy minden olvasó számára könnyen érthető legyen, miként alkalmazza a termék a DICOM-funkciókat. A rendszerek integrálásáért felelős szakembereknek teljes mértékben ismerniük kell a DICOM-technológia egészet, tudniuk kell, hogy milyen összefüggés áll fenn a dokumentum táblázatai és a termék működése között, illetve ismerniük kell, hogyan integrálható ez a működés a kompatibilis DICOM-funkciókat támogató egyéb eszközökkel.

3.3. MEGJEGYZÉSEK

A jelen DICOM megfelelőségi nyilatkozat célja a Site~Rite® 8 ultrahangrendszer DICOM és az egyéb DICOM-termékek közötti integráció megkönnyítése. A megfelelőségi nyilatkozat a DICOM-szabvánnyal együtt értelmezendő. Önmagában a DICOM nem szavatolja a rendszerek egymással való használhatóságát. A megfelelőségi nyilatkozat ugyanakkor hasznos kiindulási pontként alkalmazható a kompatibilis DICOM-funkciók kezelésére alkalmas rendszerek együttes működhetetlenségének eldöntésére.

A megfelelőségi nyilatkozat nem helyettesíti a más DICOM-eszközökkel végzett adatátvitel megfelelőségének ellenőrzésére tett lépéseket. A következőkkel a felhasználónak mindenféle tisztában kell lennie:

- A különféle megfelelőségi nyilatkozatok összehasonlítása csupán az első lépése annak a folyamatnak, amelynek célja a termék és a többi, DICOM-szabványnak megfelelő eszköz együttes működhetetlenségének meghatározása.
- Az egészségügyi intézményben külön tesztelési eljárásokat kell kidolgozni és alkalmazni a különféle DICOM-rendszerek együttes használhatóságának meghatározására.

3.4. KIFEJEZÉSEK ÉS MAGYARÁZATUK

A következőkben a megfelelőségi nyilatkozatban szereplő kifejezések köznapi nyelven megfogalmazott meghatározásai olvashatók. A kifejezések hivatalos magyarázata a DICOM-szabványban található.

Alkalmazássentitás neve – a rendszer kivüllálói ezen a néven ismerik az alkalmazássentitást. A hálózatban lévő DICOM-alkalmazások ennek a néven az alapján azonosítják egymást.

Alkalmazáskörnyezet – az alkalmazássentitások között végzett kommunikáció típusa. Példa: DICOM hálózati protokoll.

Attribútum – objektumdefinícióban szereplő egységnyi adat; címkével azonosított adatelem. Állhat komplex adatszerkezetekből (szekvencia) is, amelyek önmagukban alacsonyabb szintű adatelemekből épülnek fel. Példák: betegazonosító (0010,0020), csatlakozás száma (0008,0050).

Átviteli szintaxis – a DICOM-adatobjektumok és üzenetek továbbítása során alkalmazott titkosítás. Példák: JPEG-tömörített képek, little endian (kicsi elől) explicit értékmegjelenítés.

Biztonsági profil – különféle biztonsági mechanizmusok, pl. titkosítás, felhasználói hitelesítés vagy digitális aláírás együttese, amelyet az alkalmazássentitás az adatok bizalmas kezelése, épsége és/vagy az adatcseré tárgyát képező DICOM-adatok rendelkezésre állásának biztosítása érdekében alkalmaz.

Címke – adatelem 32 bites azonosítója, egy pár négy számjegyű, hexadecimális számból áll, amelynek tagjai a „csoport” és az „elem”. Amennyiben a csoportot jelző szám páratlan, a címke privát (gyártófüggő) adatelemre utal. Példák: (0010,0020) [betegazonosító], (07FE,0010) [képpontadat], (0019,0210) [privát adatelem].

Egyeztetés – a hozzárendelés létrehozásának első lépése, amely lehetővé teszi, hogy az alkalmazássentitások megállapodjanak a cserélődő adatok típusát és az adatok titkosítási módját illetően.

Értékmegjelenítés (VR) – a DICOM-adelelem formátumtípusa, pl. szöveg, egész szám, személy neve vagy kód. a DICOM információs objektumok az egyes adelelemek típusát explicit módon azonosítva (explicit értékmegjelenítéssel) vagy implicit értékmegjelenítéssel (implicit értékmegjelenítéssel) továbbíthatók. Implicit értékmegjelenítéskor a fogadó alkalmazásnak DICOM-adatszótár segítségével kell meghatároznia az adelelemek formátumát.

Hozzárendelés – alkalmazássentitások között létrejövő hálózati kommunikációs csatorna.
Joint Photographic Experts Group (JPEG) – a DICOM-alkalmazások által használt szabványos képtömörítési eljárások együttese.

Megjelenítési környezet – a hozzárendelés során alkalmazott hálózati DICOM-szolgáltatások halmaza, a halmaz az alkalmazásidentitások közötti megegyezés nyomán alakul ki, és az absztrakta szintaxisokat és az átviteli szintaxisokat is magában foglalja.

Médiaalkalmazási profil – a cserélhető adathordozón (pl. CD lemez) átvitt DICOM-adatobjektumok és titkosítás jellemzői.

Modul – adatobjektum-definícióban lévő attribútumkészlet, amelynek tagjait logikai kapcsolat füzi egymáshoz. Példa: a betegmodulban a beteg neve, azonosítója, születési dátuma és neme szerepel.

Szolgáltatás/objektumpár (SOP) osztály – adott adattípus (objektum) hálózati vagy hordozóátviteli (szolgáltatás) jellemzője, az együttműködést szolgáló DICOM-szabvány egyik alapvető eleme. Példák: ultrahangkép-tárolási szolgáltatás, tömörítési szintaxis, átviteli szintaxis vagy betegadatok.

Szolgáltatásosztály-felhasználó (SCU) – hálózati DICOM-szolgáltatást használó alkalmazásidentitás-szerep, többnyire kliens. Példa: képalkotó módszer (képtároló SCU és modális munkalista SCU), képalkotó munkaállomás (képlekérdező/beolvasó SCU).

Szolgáltatásosztály-szolgáltató (SCP) – az alkalmazásidentitás szerepköre. Hálózati DICOM-szolgáltatást nyújt, és a legtöbbször egy kiszolgálóról van szó, amely más alkalmazásidentitáspárok (szolgáltatásosztály-felhasználó) által kért műveleteket hajt végre. Példák: képaregistráló és adatátviteli rendszer (képtároló SCP és képlekérdező/beolvasó SCP), radiológiai információs rendszer (modális munkalista SCP).

3.5. A DICOM-ADATÁTVITEL ALAPJAI

Ez a szakasz a laikusok számára mutatja be a megfelelőségi nyilatkozatban használt kifejezések jelentését. A megfelelőségi nyilatkozatban használt fontosabb kifejezések az alábbi szövegben dölt betűvel szedve szerepelnek. A szakasz tartalma nem minősül DICOM-oktatási anyag, és a DICOM-mal kapcsolatos kifejezéseket leegyszerűsítve, közérthető formában tárgyalja.

A hálózaton keresztül DICOM-protokoll segítségével kommunikálni kívánó két alkalmazásidentitásnak (eszközök) először egy „kézfogás” keretében meg kell állapodniuk bizonyos paraméterekben. Az egyik eszköznek hozzárendelést (a másik eszközzelet való kapcsolatot) kell kezdeményeznie, és meg kell kérdeznie, hogy a másik eszköz alkalmas-e az adott szolgáltatás, adatok és titkosítás kezelésére (egyeztetés).

A DICOM meghatározza a hálózati szolgáltatások számát és az információs objektumok típusát. Ezek a jellemezők egyébként az egyeztetés során absztrakta szintaxis néven ismertek. A DICOM az adattitkosítás módját is meghatározza, és ennek neve átvitel szintaxis. Az egyeztetés lehetővé teszi a kezdeményező alkalmazásidentitásnak, hogy ajánlatait tegyen a hozzárendelés során használt absztrakta és átviteli szintaxisra. Ezeket a kombinációkat megjelenítési környezeteknek hívjuk. A fogadó alkalmazásidentitás azt a megjelenítési környezetet fogadja el, amelyet kezelni képes.
A hozzárendelési egyeztetés során minden megjelenítési környezetben lehetőség nyilik az eszközök számára, hogy megállapodás szükséssen a szerepeket illetően; melyik eszköz lesz a szolgáltatásszóta-szolgáltató (SCP), vagyis a kiszolgáló. Általában az SCU kezdeményezi a csatlakozást, vagyis a kliensrendszer hívja meg a kiszolgálót, azonban ez nem feltétlenül igaz minden esetben.

A hozzárendelési egyeztetés lehetővé teszi a maximált hálózati csomagok cseréjét (PDU – méret, biztonsági adatok és hálózati szolgáltatási lehetőségek (kibővített egyeztetési adatok).

A hozzárendelési paraméterek egyeztetését követően az alkalmazásszintatítás megkezdhetik az adatcseréből, a leggyakoribb adatcserék során munkalista-lekérdezések, tárolt képek listái, képobjektumok és elemzések (strukturált jelentések) továbbítását, illetve képek filmnyomtatókra küldésére is sor kerülhet a cserélhető adategységek mindenét egyeztetett átviteli szintaxissal történik. Az alapértelmezett átviteli szintaxist minden rendszer elfogadja, azonban nem minden esetben bizonyul hatékony megoldásnak. A fogadó fél minden átvitelt válaszállapotot nyugtáz, amely lehet sikeres, sikertelen, illetve zárulhat úgy is, hogy a lekérdezési vagy beolvasási műveletek még folyamatban vannak.

Két alkalmazásszintatítás adathordozó, pl. CD lemez segítségével is kommunikálhat egymással. Mivel hozzárendelési egyeztetésre nincs lehetőség, mindkét alkalmazásszintatítás adathordozó-alkalmazási profil formátumot, absztrakt, illetve átviteli szintaxist.

3.6. RÖVIDÍTÉSEK

A dokumentumban a következő rövidítéseket és mozaikszavakat használtuk:

<table>
<thead>
<tr>
<th>Rövidítés</th>
<th>Magyarázat</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology (Amerikai Radiológiai Kollégium)</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine (Orvosi digitális képkockatás és kommunikáció)</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association (Villamosipari Gyártók Országos Szövetsége)</td>
</tr>
<tr>
<td>AE</td>
<td>Alkalmazásszintatítás</td>
</tr>
<tr>
<td>PDU</td>
<td>Protokolladat-egység</td>
</tr>
<tr>
<td>SCP</td>
<td>Szolgáltatásszóta-szolgáltató</td>
</tr>
<tr>
<td>SCU</td>
<td>Szolgáltatásszóta-felhasználó</td>
</tr>
<tr>
<td>SOP</td>
<td>Szolgáltatás-objektum pár</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol (Átvitelvezérlő protokoll/Internetprotokoll)</td>
</tr>
<tr>
<td>UID</td>
<td>Egyedi azonosító</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian Explicit (Kicsi elől, explicit)</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit (Kicsi elől, implicit)</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian Explicit (Nagy elől, explicit)</td>
</tr>
</tbody>
</table>

3.7. SZABVÁNYOK

<table>
<thead>
<tr>
<th>Szabvány</th>
<th>Magyarázat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: a szolgáltatási osztályok adatai a következő oldalon ingyen megtekinthetők: http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. A HÁLÓZAT FELÉPÍTÉSE

4.1. MŰKÖDÉSI MODELL

4.1.1. Adatáramlás az alkalmazások között

A Site-Rite® 8 ultrahangrendszer DICOM-alkalmazásának tároló alkalmazásentitása képeket küld a távoli alkalmazásentitásnak. Hétköznapi értelemben képek küldéséről van szó. a képküldési műveletet a rendszer az elkészített vizsgálatokra vagy a kiválasztott képekre vonatkozóan végzi el. a Site-Rite® 8 ultrahangrendszer DICOM-alkalmazásának felhasználói kezelőfelületén keresztül a felhasználó a képcsoportokat azonnal a megadott célhelyen tárolhatja el.

4.1.2. Az alkalmazásentitások funkcionális ismertetése

4.1.2.1. A tároló alkalmazásentitás funkcionális ismertetése

A felhasználó kiválasztja a Site-Rite® 8 ultrahangrendszer DICOM-alkalmazásánból helyben tárolt képcsoportot, majd a DICOM Transfer (DICOM-átvitel) (Küldés) gombjával aktiválja a tároló alkalmazásentitást. a rendszer hozzárendelési (csatlakozási) kérelemet küld az előre konfigurált cél-alkalmazásentitásnak, a prezentációs környezet sikeres egyeztetését követően pedig megindul a képátvitel. Ha a hozzárendelés (kapcsolat) nem jön létre, a rendszer azonnal értesíti a felhasználót, a hiba részleteit pedig naplózza. Hiba esetén a tároló alkalmazásentitás nem kezdeményez újabb hozzárendelést.
4.1.2.2. A rendszeren kívül elvégzendő tevékenységek

1. A felhasználó megadja a beteg és a vizsgálat adatait
2. A felhasználó képet készít
3. A felhasználó kiválasztja a képet, majd elküldi
4. Lehívott képek tárolása

4.1-2. ábra
FÖLYAMATOKRA VONATKOZÓ KORLÁTOZÁSOK

Normál munkafolyamat esetén a 4.1-2. ábra korlátozásai vannak érvényben.

1. A felhasználó szükség szerint beviszi vagy frissíti a betegek vagy a vizsgálatok adatait.
2. A felhasználó a vizsgálat közben képet készít.
3. A felhasználó a helyi tárolóból a felhasználói felület segítségével kiválasztja a képeket az átvitelhez, majd a felhasználói felületen megnyomja a DICOM Transfer (DICOM-átvitel) gombot.
4. Az alkalmazás beolvassa a felhasználó által a vizsgálatot megadott betegadatokat, létrehozza a DICOM-példányokat, majd a kiválasztott DICOM-példányt elküldi egy távoli alkalmazásentitásnak.

4.2. AZ ALKALMAZÁSENTITÁS JELLEMZŐI

4.2.1. Tároló alkalmazásentitás jellemzői

4.2.1.1. SOP-osztályok

A Site-Rite® 8 ultrahangrendszer DICOM-alkalmazása a következő SOP-osztályok szabványainak felel meg:

<table>
<thead>
<tr>
<th>SOP-osztály neve</th>
<th>SOP-osztály egyedi azonosítója</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrahangkép-tárolás</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Igen</td>
<td>Nem</td>
</tr>
<tr>
<td>Másodlagos képrőgzítő tárolás</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Igen</td>
<td>Nem</td>
</tr>
</tbody>
</table>
4.2.1.2. Hozzárendelési irányelvek

4.2.1.2.1. Általános
A DICOM 3.0 DICOM-szabványnak megfelelő alkalmazáskörnyezet-nevét a program mindig felajánlja.

4.2.2. táblázat
Alkalmazásidentitás-tárolás DICOM-alkalmazási környezete

| Alkalmazási környezet neve | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Hozzárendelések száma
A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása minden olyan célhelyhez egyszerre egy hozzárendelést kezdeményez, amelyhez a felhasználó által aktivált átviteli kérelm feldolgozása folyamatban van. Egyszerre csak egy átviteli feladat aktív, és a többi feladat az aktuális feladat sikeres vagy sikertelen befejeződésig függőben marad.

4.2.3. táblázat
Tároló alkalmazásidentitáshoz kapcsolódó kezdeményezett hozzárendelések száma

| Párhuzamos hozzárendelések maximális száma | 1 |

4.2.1.2.3. Aszinkron műveletek
A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása az aszinkron adatátvitelt (egy kapcsolaton keresztüli több adatátvitelt) nem képes kezelni.

4.2.4. táblázat
SCU-tároló aszinkron jellemzői

| Hátralévő aszinkron tranzakciók maximális száma | 1 |

4.2.1.2.4. Alkalmazásazonosító információ
Az alkalmazásidentitás alkalmazásazonosító információja:

4.2.5. táblázat
DICOM-alkalmazási osztály

| Alkalmazási osztály egyedi azonosítója | 1.2.826.0.1.3680043.2.360.0.3.5.4 |

4.2.1.3. Hozzárendelés-kezdeményezési irányelv

4.2.1.3.1. Tevékenység – képküldés

4.2.1.3.1.1. Tevékenységek ismertetése és sorrendje
Az alkalmazás felhasználói felületének segítségével a felhasználó képeket választhat ki, majd egy előre megadott célhelyre küldheti őket. A kérelmet a rendszer a küldést kezdeményező gomb megnyomása után azonnal végrehajtja, majd értesíti a felhasználót az átvitel állapotáról.
Amikor a felhasználó DICOM-átvitelt kezdeményez, a Site~Rite® 8 ultrahangrendszer DICOM-alkalmazásának tároló alkalmazásentitása megpróbál kapcsolatot (hozzárendelést) létesíteni az előre megadott célkiszelőval, és a kiválasztott képek tárolásához C-STORE kérelmet kezdeményez. Ha sikeresen létrejött a távoli alkalmazásentitás hozzárendelése, a rendszer a nyílt kapcsolaton keresztül megkezdi a példányok átvitelét. Az átvitel állapotáról a felhasználó a felhasználói felületen keresztül kap tájékoztatást. Amennyiben a távoli alkalmazástól érkező C-STORE válasz nem sikeres vagy figyelmeztetés besorolású, a hozzárendelés megszakad, a felhasználó pedig értesítést kap a művelet sikertelenségéről. Az átvitel bármikor újraindítható.

A tároló alkalmazásentitás a C-STORE kérelemben kiadása érdemében új hozzárendelést kísérel meg. Több kép kiválasztása esetén a rendszer minden egyes képhez külön hozzárendelést végez.

4.2-6. ábra

Tevékenységi folyamat – képküldés

A tároló alkalmazásentitás és a távoli alkalmazásentitás (PACS-archívum vagy SCP-ként a tároló szolgáltatási osztályt támogató képkezelő) együttműködésének lehetséges folyamatábrája a 4.2-6. ábrán látható:

1. A felhasználó egy vagy több képet kiválaszt az átvitelhez.
2. A tároló alkalmazásentitás minden kiválasztott képhez külön hozzárendelést indít a távoli alkalmazásentitással.
3. A rendszer a felhasználó által kiválasztott egyik képet C-STORE kérelemmel küldi el a távoli alkalmazásentitásnak, a távoli alkalmazásentitás pedig C-STORE válasszal reagál (sikeres állapot).
4. A tároló alkalmazásentitás zárja a hozzárendelést.
5. A tároló alkalmazásidentitás a fenti 2–4. lépést követve feldolgozza a következő képet. A műveletet az utolsó kép feldolgozásáig folytatja.

DICOM megfelelőségi nyilatkozat a Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása

11. oldal
4.2.1.3.1.2. Ajánlott megjelenítési környezet

A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása a következő táblázatban szereplő bármely megjelenítési környezet felajánlására alkalmas:

4.2-7. táblázat

<table>
<thead>
<tr>
<th>Magjelenítési környezet táblázata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absztrakt szintaxis</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Név</td>
</tr>
<tr>
<td>Ultrahangkép-tárolás</td>
</tr>
<tr>
<td>Másodlagos képrögzítő tárolás</td>
</tr>
</tbody>
</table>

4.2-8. táblázat

<table>
<thead>
<tr>
<th>Javasolt átviteli szintaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átviteli szintaxis neve</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Implicit VR Little Endian (DICOM-alapértelmezett)</td>
</tr>
<tr>
<td>Explicit VR Little Endian</td>
</tr>
<tr>
<td>Explicit VR Big Endian</td>
</tr>
</tbody>
</table>

4.2-9. táblázat

<table>
<thead>
<tr>
<th>Tömörítés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átviteli szintaxis neve</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>JPEG veszteséges</td>
</tr>
<tr>
<td>JPEG veszteségmentes</td>
</tr>
</tbody>
</table>

Kép átvitele során a Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása több megjelenítési környezetben is ugyanazt az absztrakt szintaxist (vagyis a képpályán SOP-osztályát) fogja alkalmazni. Az absztrakt és átviteli szintaxisból felépülő pár teljesen egyező. Az egyik ajánlott megjelenítési környezetben az alapértelmezett absztrakt szintaxis mellett szerepel majd az alapértelmezett DICOM-átviteli szintaxis (Implicit VR Little Endian). Egy ellenőrzési SOP-osztályt tartalmazó megjelenítési környezet mindig szerepel a tároló alkalmazásállapotot hozzárendelési kérelmében.

4.2.1.3.1.3. SOP-specifikus megfelelőség – képtároló SOP-osztályok

Külön utalás hiányában a tároló alkalmazásállapot által támogatott összes képtároló SOP-osztály hasonlóképpen működik. Közös ismertetésük ebben a szakaszban olvasható.

A felhasználó által kiválasztott képpályán tároló SOP-osztálytól függően a tároló alkalmazásállapot többféle megjelenítési környezetet rendelkezõ hozzárendelési javaslatot küld a távoli alkalmazásállapotnak. A javaslatok mindegyike a tároló alkalmazásállapot által kezelhetõ, különféle átviteli szintaxisokat tartalmaz. Amennyiben a rendszer a feldolgozás alatt álló képpályán tároló SOP-osztályához illő egyetlen megjelenítési környezetet sem fogad el, a program azonnal értesíti a felhasználót a sikertelenség tényéről.
Amennyiben a távoli alkalmazásentitás több megjelenítési környezetet is elfogad ugyanahhoz az absztrakt szintonishoz, a tároló alkalmazásentitás alapértelmezés szerint a C-STORE eljárás előtti kép (ultrahangkép vagy másodlagos felvétel) alapján választja ki a megjelenítési környezetet.

A következő táblázat a tároló alkalmazásentitás működési jellemzőit mutatja, amikor a C-STORE válaszban állapotkód szerepel:

<table>
<thead>
<tr>
<th>Szolgáltatás állapota</th>
<th>Egyéb jelentés</th>
<th>Hibakód</th>
<th>Művelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siker</td>
<td>Siker</td>
<td>0000</td>
<td>Az SCP sikeresen eltárolta az SOP-példányt. Amennyiben az átviteli kérelmen lévő összes kiválasztott SOP-példány sikeresnek minősül, a rendszer sikeresnek tekinti az átvitelt, és értesíti a felhasználót.</td>
</tr>
<tr>
<td>Figyelmeztetés</td>
<td>Figyelmeztetés</td>
<td>B000-BFFF</td>
<td>A képátvitel sikeresnek minősül.</td>
</tr>
<tr>
<td>*</td>
<td>Hiba</td>
<td>Bármilyen más állapotkód</td>
<td>Az SCP nem tudta tárolni a példányt.</td>
</tr>
</tbody>
</table>

A tároló alkalmazásentitásnak a sikertelen adatátvitel közben végzett működése a következő ábrának megfelelően:

4.2-11. táblázat
A tároló működése sikertelen adatátvitel közben

<table>
<thead>
<tr>
<th>Kivétel</th>
<th>Művelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Időtúllépés</td>
<td>A hozzárendelés az A-ABORT parancsra megszakad, és az átviteli feladat sikertelennek minősül. Az esemény okát a rendszer naplófájljában rögzíti.</td>
</tr>
<tr>
<td>A hozzárendelést az SCP vagy a hálózati réteg szakította meg</td>
<td>Az átviteli feladat sikertelennek minősül. Az esemény okát a felhasználó részére naplófájljában rögzíti a rendszer.</td>
</tr>
</tbody>
</table>

Megjegyzés: a naplófájí a Shift+Ctrl+L billentyűkombinációval USB-tárolóeszközre menthető.

A sikertelen átvitelt a felhasználó újraindíthatja, a sikertelenül elküldött fájlokat a rendszer nem próbálja meg automatikusan ismét elküldeni.

A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozott különféle képtároló SOP-példányok tartalma megfelel a DICOM-szabvány PS 3.3 kép IOD definíciójának, melynek részletezése a 6.1. szakaszban olvasható.

4.3. ADATÁTVITELI PROFILOK
A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása a DICOM-szabvány 8. szakaszában írottak szerint képes kezelni a DICOM V3.0 TCP/IP hálózati adatátviteli funkciókat.

4.3.1. TCP/IP köteg
A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása a végrehajtáshoz használt számítógéptől veszi át a TCP/IP köteget.
4.3.1.1. Fizikai adathordozók támogatása
A Site-Rite® 8 ultrahangrendszer DICOM-alkalmazása a végrehajtáshoz használt TCP/IP rendszertől független adathordozási módszert alkalmaz, hiszen a végrehajtáshoz használt számítógépes rendszertől veszi át.

4.4. BŐVÍTÉSEK / SPECIÁLIS KIALAKÍTÁS / TESTRESZABÁS
Nem alkalmazható

4.5. KONFIGURÁCIÓ

4.5.1. Alkalmazásentitás-név / prezentációcím-hozzárendelés
Nincs alapértelmezett alkalmazásentitás-név. A helyi és távoli alkalmazásentitás-neveket, valamint a távoli kiszolgáló gazdacímeit és portszámait konfigurálni kell. A konfigurált helyi alkalmazásentitás-nevet és a távoli kapcsolat adatait a tároló alkalmazásentitás későbbi használat érdekében tárolja.

4.5.1.1. Helyi alkalmazásentitás-nevek
A tároló alkalmazásentitás-hoz csak egy helyi alkalmazásentitás-név konfigurálható. A konfigurációt a felhasználó módosíthatja.

4.5.1.2. Távoli alkalmazásentitás-nevek
A Site-Rite® 8 ultrahangrendszer DICOM-alkalmazása csak egy távoli alkalmazásentitás-név konfigurálását teszi lehetővé. A távoli alkalmazásentitás nevét, a távoli kiszolgáló gazdacímet (IP-címét) és portszámát a telepítéskor kell beállítani. A távoli alkalmazásentitást, a gazdacímet és a portszámot a felhasználó később bármikor módosíthatja.

4.5.1.2.1. Távoli SCP
A következő táblázat a távoli SCP konfigurációs lehetőségeit ismerteti.

4.5-1. táblázat
A távoli SCP konfigurációs paramétereinek táblázata

<table>
<thead>
<tr>
<th>SCP-beállítások</th>
<th>Alapértelmezett</th>
<th>Konfigurálható</th>
<th>Konfigurációs beállítások</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tároló alkalmazásentitás neve</td>
<td>Nem</td>
<td>Igen</td>
<td>n. a.</td>
</tr>
<tr>
<td>Távoli alkalmazásentitás neve</td>
<td>Nem</td>
<td>Igen</td>
<td>n. a.</td>
</tr>
<tr>
<td>Távoli IP-cím</td>
<td>Nem</td>
<td>Igen</td>
<td>n. a.</td>
</tr>
<tr>
<td>Távoli TCP-port</td>
<td>Nem</td>
<td>Igen</td>
<td>n. a.</td>
</tr>
<tr>
<td>Atviteli szintaxis</td>
<td>Nem</td>
<td>Igen</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Tömörítés</td>
<td>Nem</td>
<td>Igen</td>
<td>Veszteségmentes, Veszteséges, Nincs</td>
</tr>
</tbody>
</table>
4.6. KIBŐVÍTETT KARACTERKÉSZLETEK TÁMOGATÁSA
A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása a következő karakterkészleteket támogatja:
- ISO-IR 6 (alapértelmezett): Alap G0 készlet
- ISO-IR 100: 1. latin ABC
A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása az értékek megjelenítéséhez, pl. a betegnevek, vizsgálat- és sorozatleírások megjelenítéséhez a következő karakterkészleteket alkalmazza:
- ISO_IR 144 (ISO 8859-5:1988 kiegészítő latin/cirill betűkészlet)

5. MÉDIATÁROLÁS
A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása médiatárolásra nem alkalmas.

6. FÜGGELÉKEK

6.1. IOD-TARTALOM

6.1.1. Létrehozott SOP-példány(ok)
A 6.1-1. táblázatban a Site~Rite® 8 ultrahangrendszer DICOM-alkalmazásának tároló alkalmazásenitítéséhez által küldött ultrahangos/másodlagosan rögzített kép attribútumai szerepelnek.

A táblázatokban néhány rövidítés is szerepel. A jelenlétre vonatkozó oszlopban lévő rövidítések:

- **VNAP**: Nem mindig jelen lévő érték (Value Not Always Present) (ha nincs érték, az elküldött attribútum nulla hosszúságú)
- **ANAP**: Nem mindig jelen lévő attribútum (Attribute Not Always Present)
- **MINDIG**: Mindig jelen lévő
- **ÜRES**: Az attribútum küldése üresen történik

A „Forrás” oszlopban használt rövidítések:
- **FELHASZ.**: Az attribútumérték forrása felhasználói bevitel
- **AUTO**: Az attribútumérték automatikusan jön létre
- **KONFIG**: Az attribútumérték forrása konfigurálható paraméter

6.1.1.1. Másodlagos képrögzítő IOD

6.1. táblázat
A LÉTREHOZOTT ULTRAHANGOS ÉS MÁSODLAGOSAN RÖGZÍTETT SOP PÉLDÁNYOK IOD-JA

<table>
<thead>
<tr>
<th>IE</th>
<th>Modul</th>
<th>Azonosító</th>
<th>Modul jelenléte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beteg</td>
<td>Beteg neve</td>
<td>6.1-2. táblázat</td>
<td>MINDIG</td>
</tr>
<tr>
<td>Vizsgálat</td>
<td>Általános vizsgálat</td>
<td>6.1-3. táblázat</td>
<td>MINDIG</td>
</tr>
<tr>
<td>Sorozat</td>
<td>Általános sorozat</td>
<td>6.1-4. táblázat</td>
<td>MINDIG</td>
</tr>
<tr>
<td>Eszköz</td>
<td>SC-eszköz</td>
<td>6.1-5. táblázat</td>
<td>MINDIG</td>
</tr>
<tr>
<td>Kép</td>
<td>Általános kép</td>
<td>6.1-6. táblázat</td>
<td>MINDIG</td>
</tr>
<tr>
<td></td>
<td>Képpontok</td>
<td>6.1-7. táblázat</td>
<td>MINDIG</td>
</tr>
<tr>
<td></td>
<td>SC-kép</td>
<td>6.1-8. táblázat</td>
<td>MINDIG</td>
</tr>
<tr>
<td></td>
<td>SOP – közös</td>
<td>6.1-9. táblázat</td>
<td>MINDIG</td>
</tr>
</tbody>
</table>
6.1.1.2. Közös modul

6.1.2. táblázat
LÉTREHOZOTT SOP-PÉLDÁNYOK PÁCIENSMODULJA

<table>
<thead>
<tr>
<th>Attribútum neve</th>
<th>Címke</th>
<th>VR</th>
<th>Érték</th>
<th>Érték jelenléte</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>A beteg neve</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Felhasználói bevitel vagy szkriptfájl. Legfeljebb 64 karakter</td>
<td>MINDIG</td>
<td>FELHASZ.</td>
</tr>
<tr>
<td>Betegazonosító</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Felhasználói bevitel vagy szkriptfájl. Legfeljebb 64 karakter</td>
<td>MINDIG</td>
<td>FELHASZ.</td>
</tr>
<tr>
<td>Beteg születési dátuma</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Mindig üres. Nulla hosszúság</td>
<td>VNAP</td>
<td>FELHASZ.</td>
</tr>
<tr>
<td>A beteg neme</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Felhasználói bevitel vagy szkriptfájl</td>
<td>MINDIG</td>
<td>FELHASZ.</td>
</tr>
</tbody>
</table>

6.1.3. táblázat
LÉTREHOZOTT SOP-PÉLDÁNYOK ÁLTALÁNOS VIZSGÁLATI MODULJA

<table>
<thead>
<tr>
<th>Attribútum neve</th>
<th>Címke</th>
<th>VR</th>
<th>Érték</th>
<th>Érték jelenléte</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vizsgálati példány egyedi azonosítója</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>A Site-Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Vizsgálat dátuma</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Mindig üres</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Vizsgálat ideje</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Mindig üres</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Csatlakozás száma</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Mindig üres</td>
<td>VNAP</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.4. táblázat
LÉTREHOZOTT SOP-PÉLDÁNYOK ÁLTALÁNOS SOROZATMODULJA

<table>
<thead>
<tr>
<th>Attribútum neve</th>
<th>Címke</th>
<th>VR</th>
<th>Érték</th>
<th>Érték jelenléte</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módszer</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Átalakítás típusa</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. Másodlagos képrögzítő modulok

6.1.5. táblázat
LÉTREHOZOTT SC SOP-PÉLDÁNYOK SC-ESZKÖZMODULJA

<table>
<thead>
<tr>
<th>Attribútum neve</th>
<th>Címke</th>
<th>VR</th>
<th>Érték</th>
<th>Érték jelenléte</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módszer</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Átalakítás típusa</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
6.1-6. táblázat
LÉTREHOZOTT SC SOP-PÉLDÁNYOK ÁLTALÁNOS KÉPMODULJA

<table>
<thead>
<tr>
<th>Attribútum neve</th>
<th>Címke</th>
<th>VR</th>
<th>Érték</th>
<th>Érték jelenléte</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Képtípus</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Deriváció leírása</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Képtömörítés veszteséggel</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1-7. táblázat
LÉTREHOZOTT SC SOP-PÉLDÁNYOK KÉPPONTMODULJA

<table>
<thead>
<tr>
<th>Attribútum neve</th>
<th>Címke</th>
<th>VR</th>
<th>Érték</th>
<th>Érték jelenléte</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Képpontadat</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Felhasználó által kiválasztott képfájlok (JPEG)</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Képpontokkénti minta</td>
<td>(0028,0002)</td>
<td>US</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fotometrikus felhasználás</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Planáris konfiguráció</td>
<td>(0028,0006)</td>
<td>US</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Sorok</td>
<td>(0028,0010)</td>
<td>US</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Oszlopok</td>
<td>(0028,0011)</td>
<td>US</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitsAllocated</td>
<td>(0028,0100)</td>
<td>US</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>BitsStored</td>
<td>(0028,0101)</td>
<td>US</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>HighBit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>PixelRepresentation</td>
<td>(0028,0103)</td>
<td>US</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
6.1-8. táblázat
LÉTREHOZOTT SC SOP-PÉLDÁNYOK KÉPMODULJA

<table>
<thead>
<tr>
<th>Attribútum neve</th>
<th>Címke</th>
<th>VR</th>
<th>Érték</th>
<th>Érték jelenléte</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Másodlagos rögzítés dátuma</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Képfájl (JPEG) létrehozási dátuma</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Másodlagos rögzítés időpontja</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Képfájl (JPEG) létrehozási időpontja</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1-9. táblázat
LÉTREHOZOTT SC SOP-PÉLDÁNYOK KÖZÖS SOP-MODULJA

<table>
<thead>
<tr>
<th>Attribútum neve</th>
<th>Címke</th>
<th>VR</th>
<th>Érték</th>
<th>Érték jelenléte</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speciális karakterkészlet</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>„IOS_IR 100” vagy „ISO_IR_144“</td>
<td>ANAP</td>
<td>KONFIG</td>
</tr>
<tr>
<td>SOP-osztály egyedi azonosítója</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>„1.2.840.10008.5.1.4.1.1.7“</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>SOP-példány egyedi azonosítója</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
<tr>
<td>Kódolási rendszer megjelölése</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>A Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása által létrehozva</td>
<td>MINDIG</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Gyártó:
Bard Access Systems, Inc.
605 North 5600 West
Salt Lake City, UT 84116
Amerikai Egyesült Államok

Telefon: 1-801-522-5000
Ügyfélszolgálat: 1-800-545-0890
Műszaki/gyógyszeri termékértesztelés: 1-800-443-3385
Fax: 1-801-522-4948
www.bardaccess.com

Meghatalmazott képviselő az Európai Közösségben
Bard Limited
Forest House, Brighton Road,
Crawley, West Sussex
RH11 9BP Egyesült Királyság

A Bard és a Site~Rite a C. R. Bard, Inc. védjegye és/vagy bejegyzett védjegye. Minden más védjegy saját birtokosa tulajdonát képezi.

© 2015 C. R. Bard, Inc. Minden jog fenntartva.

Összeszerelés helye: Amerikai Egyesült Államok

DICOM megfelelőségi nyilatkozat a Site~Rite® 8 ultrahangrendszer DICOM-alkalmazása

Magyar
Prohlášení o kompatibilitě aplikace DICOM ultrazvukového systému Site~Rite® 8 se standardem DICOM

Název společnosti: BARD Access Systems, Inc.

Název produktu: Aplikace DICOM ultrazvukového systému Site~Rite® 8

Verze: 1.0-rev. A-1

Interní číslo dokumentu: 1190674

Datum: 20. dubna 2015
1. PŘEHLED PROHLÁŠENÍ O KOMPATIBILITĚ

Aplikace DICOM ultrazvukového systému Site~Rite® 8 přijímá z ultrazvukového zařízení standardní rastrové obrázky JPEG a na základě informací o vybraném pacientovi generuje z ultrazvukových snímků instance ultrazvukových snímků standardu DICOM a z podpůrných snímků vln EKG instance druhotného zachycení snímků standardu DICOM. Kromě toho umožňuje uživateli ručně zadávat informace o pacientovi či o studii. Implementuje také nezbytné služby DICOM potřebné k přenosu snímků do archivu PACS.

Tabulka 1-1 uvádí přehled síťových služeb poskytovaných aplikací DICOM ultrazvukového systému Site~Rite® 8.

<table>
<thead>
<tr>
<th>Třídy SOP</th>
<th>Uživatel služby (SCU)</th>
<th>Poskytovatel služby (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přenos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrazvukový snímek</td>
<td>Ano</td>
<td>Ne</td>
</tr>
<tr>
<td>Druhotně zachycený snímek</td>
<td>Ano</td>
<td>Ne</td>
</tr>
</tbody>
</table>
2. OBSAH

1. PŘEHLED PROHLÁŠENÍ O KOMPATIBILITĚ ... 2
2. OBSAH .. 3
3. ÚVOD .. 4
 3.1. HISTORIE REVIZÍ .. 4
 3.2. KOMU JE DOKUMENT URČEN ... 4
 3.3. POZNÁMKY ... 4
 3.4. POJMY A JEICH DEFINICE .. 4
 3.5. ZÁKLADY KOMUNIKACE DICOM .. 6
 3.6. ZKRATKY ... 7
 3.7. REFERENCE .. 7
4. SÍTĚ ... 8
 4.1. MODEL IMPLEMENTACE .. 8
 4.1.1. Tok aplikacíních dat ... 8
 4.1.2. Funkční definice aplikacíních entit ... 8
 4.1.2.1. Funkční definice aplikacíní entití úložišť 8
 4.1.2.2. Sekvence reálných aktivit ... 9
 4.2. SPECIFIKACE APLIKAČNÍCH ENTIT .. 9
 4.2.1. Specifikace aplikacíní entití úložišť .. 9
 4.2.1.1. Třídy SOP .. 9
 4.2.1.2. Zásady asociace ... 10
 4.2.1.2.1. Obecné ... 10
 4.2.1.2.2. Počet asociace .. 10
 4.2.1.2.3. Asynchronnost ... 10
 4.2.1.2.4. Informace identifikující implementaci 10
 4.2.1.3. Zásady ustavení asociace ... 11
 4.2.1.3.1. Aktivita – Odeslání snímků ... 11
 4.2.1.3.1.1. Popis a sekven se aktivit ... 11
 4.2.1.3.1.2. Navržené prezentace kontexty .. 12
 4.2.1.3.1.3. Konkrétní třídy SOP úložišť snímků z hlediska kompatibility .. 13
 4.3. KOMUNIKAČNÍ PROFILY .. 14
 4.3.1. Zásobník protokolu TCP/IP .. 14
 4.3.1.1. Podpora fyzických médii .. 14
 4.4. ROZŠÍŘENÍ/SPECIALIZACE/PRIVATIZACE .. 14
 4.5. KONFIGURACE .. 14
 4.5.1. Názvy aplikacíních entit/mapování prezentačních adres 14
 4.5.1.1. Názvy místních aplikacíních entít ... 14
 4.5.1.2. Odebrání názvů aplikacíních entít ... 14
 4.5.1.2.1. Vzdálený poskytovatel SCP .. 14
 4.6. PODPORÁ ROZŠÍŘENÝCH ZNAKOVÝCH SAD ... 15
 5. VÝMĚNA MÉDIÍ .. 15
 6. PŘÍLOHY .. 15
 6.1. OBSAH OBJEKTŮ IOD .. 15
 6.1.1. Vytvořené instance SOP ... 15
 6.1.1.1. Objekty IOD druhotně zachycených snímků 16
 6.1.1.2. Společný modul ... 16
 6.1.1.3. Moduly druhotně zachycených snímků ... 17
3. ÚVOD

3.1. HISTORIE REVIZÍ

<table>
<thead>
<tr>
<th>Verze dokumentu</th>
<th>Datum vydání</th>
<th>Autor</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24. března 2015</td>
<td>Tyler Durfee</td>
<td>Původní verze</td>
</tr>
</tbody>
</table>

3.2. KOMU JE DOKUMENT URČEN

Dokument je určen klinickým pracovníkům, kteří potřebují vědět, jakým způsobem lze integrovat rozhraní DICOM ultrazvukového systému Site~Rite® 8 do klinického prostředí. Mezi tyto klinické pracovníky patří osoby odpovědné za obecné zásady sítě pro zpracování snímků a její architekturu i osoby odpovědné za integraci, které potřebují podrobně porozumět funkcím aplikace DICOM produktu. Dokument obsahuje některé základní definice standardu DICOM, aby mohl každý čtenář porozumět funkce DICOM produktu. Od osob odpovědných za integraci se však očekává úplné porozumění veškeré terminologii standardu DICOM, způsobu, jakým se tabulky v tomto dokumentu vztahují k funkcím produktu, a jak jsou tyto funkce integrovány s ostatními zařízeními, která podporují funkce DICOM.

3.3. POZNÁMKY

Účelem tohoto prohlášení o kompatibilitě se standardem DICOM je umožnit integraci rozhraní DICOM ultrazvukového systému Site~Rite® 8 s dalšími produkty s rozhraním DICOM. Prohlášení o kompatibilitě je nutné číst spolu se standardem DICOM. Standard DICOM sám o sobě nezaručuje interoperabilitu různých zařízení. Prohlášení o kompatibilitě však umožňuje základní porovnání interoperability různých aplikací podporujících funkce kompatibilní se standardem DICOM.

Toto prohlášení o kompatibilitě nenahrazuje postupy ověření správné výměny požadovaných informací s jiným vybavením s rozhraním DICOM. Uživatel by měl naopak brát v potaz následující důležité problémy:

- Porovnání prohlášení o kompatibilitě je pouze prvním krokom k dosažení propojení a interoperability mezi produktem a jiným vybavením kompatibilním se standardem DICOM.
- K ověření požadované úrovně interoperability s konkrétním vybavením kompatibilním se standardem DICOM je nutné definovat a provést testovací postupy definované zdravotnickým zařízením.

3.4. POJMY A JEJICH DEFINICE

Níže jsou uvedeny neformální definice pojmů používaných v tomto prohlášení o kompatibilitě. Závazným zdrojem formálních definic těchto pojmů je standard DICOM.

Abstraktní syntaxe – Informace schválené k výměně mezi aplikacemi, obvykle ekvivalent třídy SOP (Service/Object Pair). Příklady: Třída Verification SOP Class, třída Modality Worklist Information Model Find SOP Class, třída Computed Radiography Image Storage SOP Class.

Aplikační entita (AE) – Koncový bod výměny informací DICOM, včetně softwaru síťového nebo mediálního rozhraní DICOM, tj. softwaru, který odesílá objekty informací nebo zpráv DICOM. Jedno zařízení může používat více aplikačních entit.
Aplikační kontext – Konkrétní typ komunikace použitý při komunikaci mezi aplikačními entitami. Příklad: Síťový protokol DICOM.

Aplikační profil médií – Specifikace objektů informací DICOM a kódování použitých u externích vyměnitelných médií (například disků CD).

Asociace – Síťový komunikační kanál vytvořený mezi aplikačními entitami.

Datová jednotka protokolu (PDU) – Paket (část) zprávy DICOM odeslaný v síti. Zařízení musí definovat maximální velikost paketů zpráv DICOM, kterou mohou přijímat.

Definice objektu informací (IOD) – Určená sada atributů, které tvoří typ datového objektu. Nereprezentuje konkrétní instanci datového objektu, ale třídu podobných datových objektů se stejnými vlastnostmi. Atributy mohou být povinné (typ 1); požadované, ale případně neznámé (typ 2) a volitelné (typ 3). S použitím atributu také může být asociována podmínka (typ 1C a 2C). Příklady: Definice IOD snímku magnetické rezonance, definice IOD snímku CT, definice IOD tiskové úlohy.

Instance páru služba/objekt (SOP) – Objekt informací, konkrétní výskyt informací vyměněných v rámci třídy SOP. Příklady: Konkrétní ultrazvukový snímek.

Jedinečný identifikátor (UID) – Globálně jedinečný řetězec desítkových číslic oddělených tečkami, který identifikuje konkrétní objekt nebo třídu objektů. Jedná se o identifikátor objektu podle normy ISO-8824. Příklady: Identifikátor UID instance studie, identifikátor UID třídy SOP, identifikátor UID instance třídy SOP.

JPEG (Joint Photographic Experts Group) – Sada standardizovaných technik komprese snímků dostupných k použití aplikačemi DICOM.

Modul – Sada atributů v definici IOD, které spolu logicky souvisejí. Příklad: Modul pacienta například obsahuje jméno pacienta, ID pacienta, datum narození pacienta a pohlaví pacienta.

Název aplikační entity – Externí název aplikační entity používaný k identifikaci aplikace DICOM ostatními aplikačemi DICOM v síti.

Poskytovatel třídy služby (SCP) – Role aplikační entity, která poskytuje síťovou službu DICOM. Obvykle se jedná o server, který provádí operace požadované jinou aplikační entitou (uživatelem třídy služby). Příklady: Systém pro archivaci snímků a komunikaci (poskytovatel SCP úložiště snímků a poskytovatel SCP funkcí dotazů na snímky a jejich načítání).

Prezentací kontext – Sada síťových služeb DICOM používaných v rámci asociace ustavená na základě vyjednávání mezi aplikačními entitami; zahrnuje abstraktní syntaxe a syntaxe přenosu.

Profil zabezpečení – Sada mechanismů (například šifrování, ověření uživatele nebo digitální podpisy) používaná aplikační entitou k zajištění důvěrnosti, integrity a dostupnosti vyměňovaných dat DICOM.
Reprezentace hodnoty (VR) – Typ formátu jednotlivých datových elementů DICOM, například text, celé číslo, jméno osoby nebo kód. Objekty informací DICOM lze přenášet buď pomocí explicitní identifikace typu jednotlivých datových elementů (explicitní reprezentace VR), nebo bez explicitní identifikace (implicitní reprezentace VR). Při použití implicitní reprezentace VR musí aplikace přijímající informace k vyhledání formátu jednotlivých datových elementů používat datový slovník DICOM.

Syntaxe přenosu – Kódování používané k přenosu objektů informací a zpráv DICOM. Příklady: Komprimované soubory ve formátu JPEG (snímky), explicitní reprezentace hodnot formátu Little Endian.

Třída párů služba/oblect (SOP) – Specifikace přenosu (služba) konkrétního typu dat (objekt) prostřednictvím sítě nebo média. Jedná se o základní jednotku specifikace interoperability DICOM. Příklady: Služba úložiště ultrazvukových snímků, syntaxe komprese, syntaxe přenosu nebo informace o pacientovi.

Uživatel třídy služby (SCU) – Role aplikační entity, která používá síťovou službu DICOM. Obvykle se jedná o klienta. Příklady: Modaľita snímkování (uživatel SCU úložiště snímků a uživatel SCU pracovního seznamu modality), snímkovací pracovní stanice (uživatel SCU funkci dotazů na snímky a jejich načítání).

Vyjednávání – První fáze ustavení asociace, která umožňuje aplikačním entitám, aby se shodly na typu vyměňovaných dat a způsobu jejich kódování.

Značka – 32bitový identifikátor datového elementu reprezentovaný párem hexadecimálních hodnot se čtyřmi číslicemi označující skupinu a element. Pokud je číslo skupiny liché, značka označuje soukromý datový element (element vyhrazený pro výrobce). Příklady: (0010,0020) [Patient ID], (07FE,0010) [Pixel Data], (0019,0210) [private data element].

3.5. ZÁKLADY KOMUNIKACE DICOM
Tato část obsahuje popis terminologie používané v tomto prohlášení o kompatibilitě pro neodborné uživatele. Důležité pojmy používané v prohlášení o kompatibilitě jsou v následujícím textu označeny kurzívou. Tato část není náhradou školení o standardu DICOM a významy mnoha pojmů standardu DICOM jsou v ní zjednodušené.

Dvě aplikační entity (zařízení), která spolu chtějí komunikovat prostřednictvím síť pomoci protokolu DICOM, se musí nejprve během úvodního síťového „setkání“ shodnout na několika věcech. Jedno ze zařízení musí zahájit asociaci (připojení k druhému zařízení) a zjistit, zda druhé zařízení podporuje konkrétní služby, informace a kódování (vyjednávání).

Standard DICOM definuje množství síťových služeb a typu objektů informací, které se nazývají abstraktní syntaxí vyjednávání. Standard DICOM také definuje množství metod kódování dat, které se nazývají syntaxe přenosu. Vyjednávání umožňuje zahrnující aplikační entitě navrhnout kombinaci abstraktní syntaxe a syntaxe přenosu, která se použije v asociaci. Tyto kombinace se nazývají prezentační kontexty. Aplikační entita, která přijímá data, potvrdí prezentační kontexty, které podporuje.

Vyjednávání o asociaci také umožňuje, aby se zařízení u jednotlivých prezentačních kontekstů shodla na svých rolinch – které z nich je uživatel třídy služby (SCU – klient) a které je poskytovatel třídy služby (SCP – server). Za normálních okolností je uživatel SCU zařízení, které připojení zahájilo, tzn. klientský systém většinou volá server, i když tomu tak nemusí být vždy.
Nakonec je při vyjednávání schválen přenos maximální velikosti síťového paketu (PDU), zabezpečení a možnosti síťové služby (tzv. informace rozšířeného vyjednávání).

Aplikační entity, které se dohodly na parametrech asociace, nyní mohou zahájit přenos dat. Mezi běžné přenosy dat patří dotazy na pracovní seznamy a seznamy uložených snímků, přenosy objektů snímků a analýz (strukturovaných zpráv) a odesílání snímků do tiskáren filmů. Každá jednotka dat, kterou lze přenést, je odesílatelem formátována v souladu s příslušnou definicí objektu informací a odeslána pomocí vyjednané syntaxe přenosu. Existuje výchozí syntaxe přenosu, kterou musí přijmout všechny systémy, ale tato syntaxe nemusí být v některých případech nejefektivnější. Každý přenos je explicitně potvrzen příjemcem pomocí stavu odpovědi, který značí úspěch, chybu nebo nedokončený průběh operací načítání.

Aplikační entity také mohou vzájemně komunikovat pomocí médií (například disk CD-R). Protože v tomto případě není možné žádné vyjednávání, obě zařízení používají aplikační profil médií, který definuje „předem vyjednaný“ formát přenosu dat uložených na médiích, abstraktní syntaxi a syntaxi přenosu.

3.6. ZKRATKY

V tomto dokumentu jsou použity následující zkratky.

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology (Americká radiologická asociace)</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine (Digitální snímkování a komunikace ve zdravotnictví)</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association (Národní asociace výrobců elektrických zařízení)</td>
</tr>
<tr>
<td>AE</td>
<td>Aplikační entita</td>
</tr>
<tr>
<td>PDU</td>
<td>Datová jednotka protokolu</td>
</tr>
<tr>
<td>SCP</td>
<td>Poskytovatel třídy služby</td>
</tr>
<tr>
<td>SCU</td>
<td>Uživatel třídy služby</td>
</tr>
<tr>
<td>SOP</td>
<td>Pár služba/objekt</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Protokol TCP/IP</td>
</tr>
<tr>
<td>UID</td>
<td>Jedinečný identifikátor</td>
</tr>
<tr>
<td>LEE</td>
<td>Explicitní formát Little Endian</td>
</tr>
<tr>
<td>LEI</td>
<td>Implicitní formát Little Endian</td>
</tr>
<tr>
<td>BEE</td>
<td>Explicitní formát Big Endian</td>
</tr>
</tbody>
</table>

3.7. REFERENCE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: Specifikace tříd služeb, zdarma k dispozici na adrese http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. SÍTĚ

4.1. MODEL IMPLEMENTACE

4.1.1. Tok aplikačních dat

Odeslání
snímků

Aplikační
entita
úložiště

Vzdálená
aplikační
entita
přijímá
snímky

Rozhraní standardu DICOM

Obrázek 4.1-1
Diagram toku aplikačních dat

Aplikační entita aplikace DICOM úložiště ultrazvukového systému Site~Rite® 8 odesílá snímky vzdálené aplikační entitě. Je asociována s místně reálnou aktivitou odeslání snímků. Aktivita odeslání je provedena na základě požadavku uživatele pro každou studii nebo konkrétní vybrané snímky. Při aktivaci uživatelem prostřednictvím uživatelského rozhraní aplikace DICOM ultrazvukového systému Site~Rite® 8 lze každou označenou sadu snímků okamžitě uložit do předem nastaveného umístění.

4.1.2. Funkční definice aplikačních entit

4.1.2.1. Funkční definice aplikační entity úložiště

Uživatel v aplikaci DICOM ultrazvukového systému Site~Rite® 8 vybere sadu místně uložených snímků a výběrem tlačítka přenosu DICOM (tlačítka odeslání) aktivuje aplikační entitu úložiště. Požadavek asociované entity je odeslán předkonfigurované aplikační entitě a po úspěšném ukončení vyjednávání o prezentačním kontextu je zahájen přenos snímků. Pokud asociaci nelze ustavit, uživateli je okamžitě prezentováno upozornění na chybu s podrobnostmi. Pokud dojde k chybě, aplikační entita úložiště se ve výchozím nastavení nepokusí ustavit další asociaci.
4.1.2.2. Sekvence reálných aktivit

![Diagram sekvence reálných aktivit]

1. Uživatel zadá informace o pacientovi a studii.
2. Uživatel pořídí snímek.
3. Uživatel vybere snímek a odešle jej.
4. Pořízené snímky se uloží.

Obrázek 4.1-2 SEKVENCE

Za normálních podmínek pracovního postupu se použije sekvence znázorněná na obrázku 4.1-2:

1. Pokud je to nutné, uživatel zadá nebo aktualizuje informace o pacientovi a studii.
2. Uživatel během studie pořídí snímek.
3. Uživatel pomocí uživatelského rozhraní pro přenos do vzdálené aplikací entity vybere snímek v místním úložišti a v uživatelském rozhraní aplikace vybere položku **DICOM Transfer**.
4. Aplikace přečte informace o pacientovi zadané uživatelem pro danou studii, vygeneruje instance objektů DICOM a odešle vybranou instanci DICOM vzdálené aplikacní entitě.

4.2. SPECIFIKACE APLIKAČNÍCH ENTIT

4.2.1. Specifikace aplikační entity úložiště

4.2.1.1. Třídy SOP

Aplikace DICOM ultrazvukového systému Site~Rite® 8 poskytuje základní kompatibilitu s následujícími třídami SOP:
Tabulka 4.2-1
Třídy SOP pro aplikační entitu úložiště

<table>
<thead>
<tr>
<th>Název třídy SOP</th>
<th>Identifikátor UID třídy SOP</th>
<th>Uživatel SCU</th>
<th>Poskytovatel SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úložiště ultrazvukových snímků</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Ano</td>
<td>Ne</td>
</tr>
<tr>
<td>Úložiště druhotně zachycených snímků</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Ano</td>
<td>Ne</td>
</tr>
</tbody>
</table>

4.2.1.2. Zásady asociace

4.2.1.2.1. Obecně
Vždy je navržen standardní název aplikačního kontextu standardu DICOM 3.0:

Tabulka 4.2-2
Aplikační kontext DICOM pro aplikační entitu úložiště

| Název aplikačního kontextu | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Počet asociací
Aplikace DICOM ultrazvukového systému Site-Rite® 8 postupně ustaví asociaci pro každé cílové umístění, pro které je zpracován požadavek přenosu aktivovaný uživatelem. V jednu chvíli je vždy aktivní pouze jedna úloha přenosu. Ostatní úlohy čekají na dokončení či chybu aktivního požadavku přenosu.

Tabulka 4.2-3
Počet asociací ustavených pro aplikační entitu úložiště

Maximální počet souběžných asociací 1

4.2.1.2.3. Asynchronnost
Aplikace DICOM ultrazvukového systému Site-Rite® 8 nepodporuje asynchronní komunikaci (tj. více nevyřízených transakcí v rámci jedné asociace).

Tabulka 4.2-4
Asynchronnost u role uživatele SCU úložiště

Maximální počet nevyřízených asynchronních transakcí 1

4.2.1.2.4. Informace identifikující implementaci
Informace o implementaci aplikační entitě:

Tabulka 4.2-5
Třída implementace DICOM

Identifikátor UID třídy implementace 1.2.826.0.1.3680043.2.360.0.3.5.4
4.2.1.3. Zásady ustavení asociace

4.2.1.3.1. Aktivita – Odeslání snímků

4.2.1.3.1.1. Popis a sekvence aktivit

Uživatel může v uživatelském rozhraní aplikace vybrat snímky a požadovat jejich odeslání do předkonfigurovaného cílového umístění. Každý požadavek je proveden okamžitě po výběru tlačítka odeslání a uživateli je oznámen stav přenosu.

Když uživatel aktuuruje přenos DICOM, aplikační entita úložiště aplikace DICOM ultrazvukového systému Site~Rite® 8 se pokusí ustavit asociaci s předkonfigurovaným cílovým serverem a vytvoří požadavek C-STORE k uložení vybraných snímků. Když je v rámci tohoto procesu úspěšně ustavena asociace se vzdálenou aplikační entitou, jsou jejím prostřednictvím postupně jedna po druhé přeneseny všechny vybrané instance. Stav přenosu je prostřednictvím uživatelského rozhraní hlášen uživateli. Pokud odpověď na požadavek C-STORE od vzdálené aplikace obsahuje jiný stav než úspěch či varování, asociace je přerušena a uživateli je oznámena chyba. Uživatel může proces přenosu kdykoliv znovu spustit.

Aplikační entita úložiště se pokusí ustavit novou asociaci k odeslání požadavku C-STORE. Pokud výběr uživatela obsahuje více snímků, pro každý snímek je v pořadí sekvence vyjednána samostatná asociace.

Obrázek 4.2-6
Sekvence aktivity – Odeslání snímků
Možná sekvence interakce mezi aplikační entitou úložiště a vzdálenou aplikační entitou (archiv PACS nebo správce snímků podporující třídu služby Storage Service Class jako uživatele SCP) je znázorněna na obrázku 4.2-6:

1. Uživatel vybere jeden nebo více snímků k přenosu.
2. Aplikační entita úložiště pro každý vybraný snímek ustaví asociaci se vzdálenou aplikační entitou.
3. Jeden ze snímků vybraných uživatelem je pomocí požadavku C-STORE přenesen do vzdálené aplikační entity. Vzdálená aplikační entita reaguje odpovědí C-STORE (stavem).
4. Aplikační entita úložiště ukončí asociaci.
5. Aplikační entita úložiště pomocí kroků 2–4 zpracuje následující snímek a tento proces se opakuje, dokud nejsou zpracovány všechny snímky.

4.2.1.3.1.2. Navržené prezentační kontexty

Aplikace DICOM ultrazvukového systému Site~Rite® 8 může navrhovat kterýkoliv z prezentačních kontextů uvedených v následující tabulce.

Tabulka 4.2-7

<table>
<thead>
<tr>
<th>Abstraktní syntaxe</th>
<th>Syntaxe přenosu</th>
<th>Role</th>
<th>Ext. Neg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Název</td>
<td>UID</td>
<td>Seznam názvů</td>
<td>Seznam identifikátorů UID</td>
</tr>
<tr>
<td>Úložiště ultrazvukových snímků</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Viz tabulku 4.2-8</td>
<td>Viz tabulku 4.2-8</td>
</tr>
<tr>
<td>Úložiště druhotně zachycených snímků</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Viz tabulku 4.2-8</td>
<td>Viz tabulku 4.2-8</td>
</tr>
</tbody>
</table>

Tabulka 4.2-8

<table>
<thead>
<tr>
<th>Název syntaxe přenosu</th>
<th>Identifikátor UID syntaxe přenosu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicitní reprezentace hodnot ve formátu Little Endian (výchozí ve standardu DICOM)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Explicitní reprezentace hodnot ve formátu Little Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Explicitní reprezentace hodnot ve formátu Big Endian</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
</tbody>
</table>

Tabulka 4.2-9

<table>
<thead>
<tr>
<th>Komprese</th>
<th>Název syntaxe přenosu</th>
<th>Identifikátor UID syntaxe přenosu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ztrátový formát JPEG</td>
<td>1.2.840.10008.1.2.4.81</td>
<td></td>
</tr>
<tr>
<td>Beztrátový formát JPEG</td>
<td>1.2.840.10008.1.2.4.70</td>
<td></td>
</tr>
</tbody>
</table>

V procesu přenosu jednoho snímku aplikace DICOM ultrazvukového systému Site~Rite® 8 použije stejnou abstraktní syntaxi (například třídu SOP instance snímku) ve více různých prezentačních kontextech. Každý pár abstraktní syntaxe a syntaxe přenosu je jedinečný a jeden z navržených prezentačních kontextů bude pro každou abstraktní syntaxi obsahovat výchozi syntaxi přenosu DICOM (tj. implicitní reprezentaci hodnot ve formátu Little Endian). Součástí každého požadavku asociace vzneseného aplikační entitou úložiště je prezentační kontext se třídou Verification SOP Class.
4.2.1.3.1.3. Konkrétní třídy SOP úložiště snímků z hlediska kompatibility

Pokud není výslovně uvedeno jinak, všechny třídy SOP úložiště snímků podporované aplikační entitou úložiště mají stejné chování. Třídy jsou popsány v této části.

Na základě třídy SOP úložiště u dané instance snímku, kterou vybral uživatel, aplikační entita úložiště odešle vzdálené aplikační entitě požadavek na asociaci s více různými prezentáčními kontexty, z nichž každý obsahuje jinou syntaxi přenosu podporovanou aplikační entitou úložiště. Pokud není přijat žádný z prezentáčních kontextů odpovídajících třídě SOP úložiště vybrané instance zpracovávaného snímku, uživateli se zobrazí oznámení, že došlo k chybě.

Pokud vzdálená aplikační entita přijme pro stejnou abstraktní entitu více různých prezentáčních kontextů, aplikační entita úložiště ve výchozím nastavení před zahájením procesu C_STORE vybere prezentáční kontext na základě typu vybraného snímku (tj. ultrazvukového snímku nebo druhotně zachyceného snímku).

Možná chování aplikační entity úložiště při přijetí stavového kódu v odpovědi C-STORE jsou shrnuta v následující tabulce:

<table>
<thead>
<tr>
<th>Tabulka 4.2-10</th>
<th>Chování aplikační entity úložiště při zpracování stavového kódu v odpovědi C-STORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Služba Stav</td>
<td>Význam</td>
</tr>
<tr>
<td>Uspěch</td>
<td>Uspěch</td>
</tr>
<tr>
<td>Varování</td>
<td>Varování</td>
</tr>
<tr>
<td>*</td>
<td>Chyba</td>
</tr>
</tbody>
</table>

Možná chování aplikační entity úložiště při chybě komunikace jsou shrnuta v následující tabulce:

<table>
<thead>
<tr>
<th>Tabulka 4.2-11</th>
<th>Chování při chybě komunikace úložiště</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výjimka</td>
<td>Chování</td>
</tr>
<tr>
<td>Vypršení časového limitu</td>
<td>Asociace je ukončena pomocí požadavku A-ABORT a úloha přenosu je považována za nezdařenou. Důvod ukončení je zapsán do souboru protokolu.</td>
</tr>
<tr>
<td>Asociace je přerušena poskytovatelem SCP nebo síťovou vrstvou.</td>
<td>Úloha přenosu je považována za nezdařenou. Důvod ukončení je ohlášen uživateli zápisem do souboru protokolu.</td>
</tr>
</tbody>
</table>

Poznámka: Stisknutím kombinace kláves SHIFT+CTRL+L lze uložit soubor protokolu do úložného zařízení USB.

Uživatel může nezdařený přenos znovu spustit. Aplikace se nepokouší o opakované odeslání souborů, jejich odeslání se nezdařilo.

Obsah různých instancí SOP úložiště snímků vytvořených aplikačí DICOM ultrazvukového systému Site~Rite® 8 je kompatibilní s definicí objektů IOD snímků PS 3.3. Jeho popis je uveden v části 6.1.
4.3. KOMUNIKAČNÍ PROFILY
Applikace DICOM ultrazvukového systému Site~Rite® 8 podporuje sítěovou komunikaci DICOM prostřednictvím protokolu TCP/IP V3.0 definovanou v části 8 standardu DICOM.

4.3.1. Zásobník protokolu TCP/IP
Applikace DICOM ultrazvukového systému Site~Rite® 8 dědí svůj zásobník protokolu TCP/IP od počítačového systému, ve kterém je spuštěna.

4.3.1.1. Podpora fyzických médií
Funkce aplikace DICOM ultrazvukového systému Site~Rite® 8 je indiferentní vůči fyzickému médiu, pro které se používá protokol TCP/IP. Přístup k médiu dědí od počítačového systému, ve kterém je spuštěna.

4.4. ROZŠÍŘENÍ/SPECIALIZACE/PRIVATIZACE
Není k dispozici.

4.5. KONFIGURACE

4.5.1. Názvy aplikačních entit/mapování prezentačních adres
Nejsou poskytnuty žádné výchozí názvy aplikačních entit. Názvy místních a vzdálených aplikačních entit, adresy hostitele vzdáleného serveru a čísla portů je nutné konfigurovat. Konfigurovaný název místní aplikační entity a informace vzdáleného připojení jsou uloženy v systému k pozdějšímu použití aplikační entitou úložišti.

4.5.1.1. Názvy místních aplikačních entit
Pro aplikační entitu úložišti lze konfigurovat pouze jeden název místní aplikační entity. Tuto konfiguraci může upravit uživatel.

4.5.1.2. Odebrání názvů aplikačních entit
Aplikace DICOM ultrazvukového systému Site~Rite® 8 umožňuje definovat pouze jednu konfiguraci vzdálené aplikační entity. Název vzdálené aplikační entity, adresu hostitele vzdáleného serveru a číslo portu je nutné konfigurovat při instalaci. Konfiguraci adresy hostitele vzdálené aplikační entity číslo portu může uživatel kdykoliv upravit.

4.5.1.2.1. Vzdálený poskytovatel SCP
Následující tabulka uvádí možnosti konfigurace vzdáleného poskytovatele SCP:

<table>
<thead>
<tr>
<th>Nastavení poskytovatele SCP</th>
<th>Výchozi</th>
<th>Konfigurovatelně</th>
<th>Možnosti konfigurace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Název aplikační entity úložišti</td>
<td>Ne</td>
<td>Ano</td>
<td>---</td>
</tr>
<tr>
<td>Název vzdálené aplikační entity</td>
<td>Ne</td>
<td>Ano</td>
<td>---</td>
</tr>
<tr>
<td>Vzdálená IP adresa</td>
<td>Ne</td>
<td>Ano</td>
<td>---</td>
</tr>
<tr>
<td>Vzdálený port TCP</td>
<td>Ne</td>
<td>Ano</td>
<td>---</td>
</tr>
<tr>
<td>Syntaxe přenosu</td>
<td>Ne</td>
<td>Ano</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>Komprese</td>
<td>Ne</td>
<td>Ano</td>
<td>Bezvtrátová, ztrátová, žádná</td>
</tr>
</tbody>
</table>
4.6. PODPORA ROZŠÍŘENÝCH ZNAKOVÝCH SAD
Aplikace DICOM ultrazvukového systému Site~Rite® 8 podporuje následující znakové sady:

- ISO-IR 6 (výchozí): základní sada G0
- ISO-IR 100: latinka č. 1

Kromě toho aplikace DICOM ultrazvukového systému Site~Rite® 8 podporuje v příslušných hodnotových reprezentacích (například jméno pacienta, popis studie a popis série) použití následujícího repertoáru znaků:
- ISO_IR 144 (ISO 8859-5:1988 doplňková sada latinky/azbuky)

5. VÝMĚNA MÉDIÍ
Aplikace DICOM ultrazvukového systému Site~Rite® 8 nepodporuje úložiště médií.

6. PŘÍLOHY

6.1. OBSAH OBJEKTŮ IOD

6.1.1. Vytvořené instance SOP
Tabulka 6.1-1 definuje atributy ultrazvukových a druhotně zachycených snímků přenášených aplikační entitou úložiště aplikace DICOM ultrazvukového systému Site~Rite® 8.

V následujících tabulkách se používá množství zkratky. Ve sloupci Existence... jsou použity následující zkratky:

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>释义</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNVE</td>
<td>Hodnota nemusí vždy existovat (pokud hodnota neexistuje, atribut je odeslán s nulovou délkou).</td>
</tr>
<tr>
<td>ANVE</td>
<td>Atribut nemusí vždy existovat.</td>
</tr>
<tr>
<td>VŽDY</td>
<td>Vždy existuje.</td>
</tr>
<tr>
<td>PRÁZDNÉ</td>
<td>Atribut je odeslán bez hodnoty.</td>
</tr>
</tbody>
</table>

Ve sloupci Zdroj jsou použity následující zkratky:

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>释义</th>
</tr>
</thead>
<tbody>
<tr>
<td>UŽIVATEL</td>
<td>Zdrojem hodnoty atributu je uživatelem zadaný vstup.</td>
</tr>
<tr>
<td>AUTO</td>
<td>Hodnota atributu je generována automaticky.</td>
</tr>
<tr>
<td>KONFIG</td>
<td>Zdrojem hodnoty atributu je konfigurovatelný parametr.</td>
</tr>
</tbody>
</table>
6.1.1.1. Objekty IOD druhotně zachycených snímků

Tabulka 6.1-1

OBJEKTY IOD VÝTVORENÝCH INSTANCI SOP ULTRAZVUKOVÝCH A DRUHOTNĚ ZACHYCENÝCH SNÍMKŮ

<table>
<thead>
<tr>
<th>Instance</th>
<th>Modul</th>
<th>Reference</th>
<th>Existence modulu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient (Pacient)</td>
<td>Patient Name (Jméno pacienta)</td>
<td>Tabulka 6.1-2</td>
<td>VŽDY</td>
</tr>
<tr>
<td>Study (Studie)</td>
<td>General Study (Obecná studie)</td>
<td>Tabulka 6.1-3</td>
<td>VŽDY</td>
</tr>
<tr>
<td>Series (Série)</td>
<td>General Series (Obecné série)</td>
<td>Tabulka 6.1-4</td>
<td>VŽDY</td>
</tr>
<tr>
<td>Equipment (Vybavení)</td>
<td>SC Equipment (Vybavení SC)</td>
<td>Tabulka 6.1-5</td>
<td>VŽDY</td>
</tr>
<tr>
<td>Image (Snímek)</td>
<td>General Image (Obecný snímek)</td>
<td>Tabulka 6.1-6</td>
<td>VŽDY</td>
</tr>
<tr>
<td></td>
<td>Image Pixel (Pixely snímku)</td>
<td>Tabulka 6.1-7</td>
<td>VŽDY</td>
</tr>
<tr>
<td></td>
<td>SC Image (Snímek SC)</td>
<td>Tabulka 6.1-8</td>
<td>VŽDY</td>
</tr>
<tr>
<td></td>
<td>SOP Common (Společné třídy SOP)</td>
<td>Tabulka 6.1-9</td>
<td>VŽDY</td>
</tr>
</tbody>
</table>

6.1.1.2. Společný modul

Tabulka 6.1-2

MODUL PACIENTA VÝTVORENÝCH INSTANCI SOP

<table>
<thead>
<tr>
<th>Název atributu</th>
<th>Značka</th>
<th>Reprezentace hodnoty</th>
<th>Hodnota</th>
<th>Existence hodnoty</th>
<th>Zdroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jméno pacienta</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Uživatelský vstup nebo soubor skriptu. Maximálně 64 znaků</td>
<td>VŽDY</td>
<td>UŽIVATEL</td>
</tr>
<tr>
<td>ID pacienta</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Uživatelský vstup nebo soubor skriptu. Maximálně 64 znaků</td>
<td>VŽDY</td>
<td>UŽIVATEL</td>
</tr>
<tr>
<td>Datum narození pacienta</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Vždy prázdné. Nulová délka</td>
<td>HNVE</td>
<td>UŽIVATEL</td>
</tr>
<tr>
<td>Pohlaví pacienta</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Uživatelský vstup nebo soubor skriptu</td>
<td>VŽDY</td>
<td>UŽIVATEL</td>
</tr>
</tbody>
</table>
Tabulka 6.1-3
MODUL OBECNÉ STUDIE VYTVOŘENÝCH INSTANCÍ SOP

<table>
<thead>
<tr>
<th>Název atributu</th>
<th>Značka</th>
<th>Reprezentace hodnoty</th>
<th>Hodnota</th>
<th>Existence hodnoty</th>
<th>Zdroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifikátor UID instance studie</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Datum studie</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Vždy přázdné</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Čas studie</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Vždy přázdné</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Vstupní kód</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Vždy přázdné</td>
<td>HNVE</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabulka 6.1-4
MODUL OBECNÉ SÉRIE VYTVOŘENÝCH INSTANCÍ SOP

<table>
<thead>
<tr>
<th>Název atributu</th>
<th>Značka</th>
<th>Reprezentace hodnoty</th>
<th>Hodnota</th>
<th>Existence hodnoty</th>
<th>Zdroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalita</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Identifikátor UID instance série</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

6.1.1.3. Moduly druhotně zachycených snímků

Tabulka 6.1-5
MODUL VYBAVENÍ SC VYTVOŘENÝCH INSTANCÍ SOP

<table>
<thead>
<tr>
<th>Název atributu</th>
<th>Značka</th>
<th>Reprezentace hodnoty</th>
<th>Hodnota</th>
<th>Existence hodnoty</th>
<th>Zdroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalita</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Typ konverze</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabulka 6.1-6
MODUL OBECNÝCH SNÍMKŮ VYTVOŘENÝCH INSTANCÍ SOP

<table>
<thead>
<tr>
<th>Název atributu</th>
<th>Značka</th>
<th>Reprezentace hodnoty</th>
<th>Hodnota</th>
<th>Existence hodnoty</th>
<th>Zdroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ snímku</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Popis derivace</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Ztrátová komprese snímku</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VZDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Název atributu</td>
<td>Značka</td>
<td>Reprezentace hodnoty</td>
<td>Hodnota</td>
<td>Existence hodnoty</td>
<td>Zdroj</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>--</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Pixelová data</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Snímky vybrané uživatelem (tj. snímky ve formátu JPEG)</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Vzorků na pixel</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Fotometrická interpretace</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Rovinná konfigurace</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Řádky</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Sloupce</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Přidělené bity</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Uložené bity</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Nejvýznamnější bity</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Pixelová reprezentace</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Generováno aplikací DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Tabulka 6.1-8
MODUL SNÍMKŮ SC VYTVOŘENÝCH INSTANCÍ SOP

<table>
<thead>
<tr>
<th>Název atributu</th>
<th>Značka</th>
<th>Reprezentace hodnoty</th>
<th>Hodnota</th>
<th>Existence hodnoty</th>
<th>Zdroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum druhotného zachycení</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Datum vytvoření souboru snímku (tj. soubor JPEG)</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Čas druhotného zachycení</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Soubor snímku (tj. soubor JPEG)</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Tabulka 6.1-9
SPOLEČNÝ MODUL VYTVOŘENÝCH INSTANCÍ SOP

<table>
<thead>
<tr>
<th>Název atributu</th>
<th>Značka</th>
<th>Reprezentace hodnoty</th>
<th>Hodnota</th>
<th>Existence hodnoty</th>
<th>Zdroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifická znaková sada</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>"IOS_IR 100" nebo ISO_IR_144</td>
<td>ANVE</td>
<td>KONFIG</td>
</tr>
<tr>
<td>Identifikátor UID třídy SOP</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Identifikátor UID instance SOP</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Generováno aplikaci DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
<tr>
<td>Označení schématu kódování</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Generováno aplikaci DICOM ultrazvukového systému Site~Rite® 8</td>
<td>VŽDY</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Prohlášení o kompatibilitě aplikace DICOM ultrazvukového systému Site~Rite® 8 se standardem DICOM

Výrobce:
Bard Access Systems, Inc.
605 North 5600 West
Salt Lake City, UT 84116
USA

Telefon: 1 801 522 5000
Zákaznická podpora: 1 800 545 0890
Technická/klinická podpora: 1 800 443 3385
Fax: 1 801 522 4948
www.bardaccess.com

Bard a Site~Rite jsou ochranné známky a/nebo registrované ochranné známky společnosti C. R. Bard, Inc. Všechny ostatní ochranné známky jsou majetkem jejich příslušných vlastníků.

Zkompletováno v USA
Site~Rite® 8 Ultrason Sistemi DICOM İçin
DICOM Uygunluk Bildirimi

Firma Adı: BARD Access Systems, Inc.

Ürün Adı: Site~Rite® 8 Ultrason Sistemi DICOM

Sürüm: 1.0-rev. A-1

İç Belge Numarası: 1190674

Tarih: 20 Nisan 2015
1. UYGUNLUK BİLDİRİMİ ÖZETİ

Site~Rite® 8 Ultrason Sistemi DICOM işlevleri, Ultrason cihazından standart JPEG tarama görüntüleri alır ve seçilen hasta bilgilerine göre, ultrason görüntüleri için Ultrason Görüntüsü DICOM örnekleri ve EKG Dalga Biçimi görüntülerini desteklemek için İkincil Yakalama DICOM örnekleri oluşturur. Ayrıca, kullanıcının hasta/tetkik bilgilerini elle girmesini sağlar. Aynı zamanda, görüntüleri bir PACS arşivine iletmek için gerekli DICOM hizmetlerini de gerçekleştirir.

Tablo 1-1, Site~Rite® 8 Ultrason Sistemi DICOM uygulaması tarafından gerçekleştirilen ağ hizmetlerine genel bir bakış sağlar.

<table>
<thead>
<tr>
<th>Ağ Hizmeti</th>
<th>SOP Sınıfı</th>
<th>Hizmet Kullanıcısı (SCU)</th>
<th>Hizmet Tedarikçisi (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktarma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrason Görüntüsü</td>
<td>Evet</td>
<td>Hayır</td>
<td></td>
</tr>
<tr>
<td>İkincil Yakalama Görüntüsü</td>
<td>Evet</td>
<td>Hayır</td>
<td></td>
</tr>
</tbody>
</table>
2. İÇİNDEKİLER

1. UYGUNLUK BİLDİRİMİ ÖZETİ ... 2
2. İÇİNDEKİLER .. 3
3. GİRİŞ ... 4
3.1. REVİZYON GEÇMİŞİ .. 4
3.2. HEDEF KİTLE ... 4
3.3. AÇIKLAMALAR ... 4
3.4. TERİMLER VE TANIMLAR .. 4
3.5. DICOM İLETİŞİMİNİN TEMELLERİ .. 6
3.6. KISALTMA ... 7
3.7. REFERANSLAR ... 7
4. AĞ KURMA .. 8
4.1. UYGULAMA MODELİ .. 8
4.1.1. Uygulama Veri Ağısi ... 8
4.1.2. AE'lerin İşlevsel Tanımı ... 8
4.1.2.1. Depolama Uygulama Varlığının İşlevsel Tanımı ... 8
4.1.2.2. Gerçek Dünya Aktivitelerinin Sekansı ... 9
4.1.2.3. AE TEKNİK ÖZELLİKLERİ ... 9
4.2.1. Depolama Uygulama Varlığı Teknik Özellikleri .. 9
4.2.1.1. SOP Sınıfları ... 9
4.2.1.2. İlişki Politikaları .. 10
4.2.1.2.1. Genel .. 10
4.2.1.2.2. İlişki Sayısı ... 10
4.2.1.2.3. Asenkron Yapı .. 10
4.2.1.2.4. Uygulama Tanımlama Bilgileri .. 10
4.2.1.3. İlişki Başlatma Politikası .. 10
4.2.1.3.1. Aktivite – Görüntüleri Gönder ... 10
4.2.1.3.1.1. Aktivitelerin Tanımı ve Sekansı ... 10
4.2.1.3.1.2. Önerilen Sunum İçerişleri ... 10
4.2.1.3.1.3. SOP'ye Özel Uyguluk Görüntü Depolama SOP Sınıfları 10
4.2.1.3.2. İLLETİŞİM PROFİLLERİ .. 12
4.2.1.3.3. TCP/IP Yığını ... 12
4.2.1.3.4. Fiziksel Ortam Desteği .. 12
4.3.4.1. İLAVELER/ÖZELLEŞMELER/ÖZELLEŞTİRMEMLER .. 13
4.5. YAPILANDIRMA ... 14
4.5.1.1. Yerel AE Başlıkları ... 14
4.5.1.2. Uzak AE Başlıkları ... 14
4.5.1.2.1. Uzak SCP ... 14
4.6. GENİŞLETİLMİŞ KARAKTER KÜMELERİ İÇİN DENEK .. 14
5. ORTAM DEĞİŞİMİ ... 14
6. EKLER ... 15
6.1. IOD ÖÇERİĞİ .. 15
6.1.1. Oluşturulan SOP Örneği/Örnekleri ... 15
6.1.1.1. Ikincil Yakalama Görüntü IOD ... 15
6.1.1.2. Ortak Modül ... 15
6.1.1.3. Ikincil Yakalama Görüntü Modülleri ... 16
3. GİRİŞ

3.1. REVİZYON GEÇMİŞİ

<table>
<thead>
<tr>
<th>Belge Sürümü</th>
<th>Yayın Tarihi</th>
<th>Yazar</th>
<th>Tanım</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 Mart 2015</td>
<td>Tyler Durfee</td>
<td>İlk Sürüm</td>
</tr>
</tbody>
</table>

3.2. HEDEF KİTLE

Bu belge, Site~Rite® 8 Ultrason Sistemi DICOM uygulamasının sağlık hizmetleri tesislerine nasıl entegre edileceğini anlamaya gerek duyan kişiler için yazılmıştır. Bu kişiler, genel görüntüleme ağ politikası ve mimarısından sorumlu olan kişiler ile ürünün DICOM özellikleri ayrıntılı olarak analamaya ihtiyaç duyan entegratörleri içerir. Bu belge, herhangi bir okuyucunun, ürünün DICOM özelliklerini nasıl yerine getirdiğini anlayabileceğini ve DICOM tanılamanın işlevselliğini destekleyen diğer cihazlarla nasıl entegre edildiğini tam olarak anlamaları beklenmektedir.

3.3. AÇIKLAMALAR

Bu DICOM Uyguluk Bildiriminin amacı, Site~Rite® 8 Ultrason Sistemi DICOM ve diğer DICOM ürünlerleri arasındaki entegrasyonu kolaylaştırmaktır. Uyguluk Bildirimleri, DICOM Standardı ile birlikte okunmalı ve anlaşılmalıdır. Ancak Uyguluk Bildirimleri, DICOM Standardını, DICOM uygulamalar arasında birbirlikte çalışabilirliği ve uyumlu DICOM teknolojisini, bu belgedeki tablolardan ürünün işlevsellini ve DICOM özelliklerini destekleyen diğer cihazlarla nasıl entegre edildiğini tam olarak anlamaları beklenmektedir.

Bu Uyguluk Bildirim, hedeflenen bilgilerin doğru şekilde değişiminin sağlanmak üzere diğer DICOM ekipmanı ile validasyonun yerine geçmesi. Esasen, kullanıcı aşağıdaki önemli konulara dikkat etmelidir:

- Farklı Uyguluk Bildirimlerinin karşılaştırılması, ürün ve diğer DICOM uyumlu ekipman arasında ara bağlantılı ve birlikte çalışabilirliği değerlendirimeye yönelik yalnızca ilk adımdır.
- Sağlık hizmetleri tesislerine belirlendiği gibi, belirli bir uyumlu DICOM ekipmanı ile gereken birlikte çalışabilirlik seviyesini onaylamak için test prosedürleri tanımlanmalı ve yürütülmelidir.

3.4. TERİMLER VE TANIMLAR

Bu Uyguluk Bildiriminde kullanılan aşağıdaki terimler için resmi olmayan tanımlar verilmiştir. DICOM Standardı, bu terimlerin resmi tanımları için güvenilir kaynak olmaktadır.

Aktarım Söz Dizimi – DICOM bilgi nesnelerinin ve mesajlarının değişimi için kullanılan kodlama. Örnekler: JPEG sıkıştırılmış (görüntüler), yüksek son haneli açık değer gösterimi.

Benzersiz Tanımlayıcı (UID) – özel bir nesne ya da nesne sınıfını tanımlayan evrensel olarak benzersiz “noktalı ondalık sayı” dizisi; bir ISO-8824 Nesne Tanımlayıcı. Örnekler: Çalışma Örneği UID, SOP Sınıfı UID, SOP Örneği UID.

Bilgi Nesnesi Tanımı (IOD) – bir veri nesnesi tipini içeren belirlenmiş Öznitelikler dizisi; özel bir veri nesnesi örneğini temsil etmektedir. Öznitelikler, Zorunlu (Tip 1), Gereklili (Tip 2) veya İstege Bağlı (Tip 3) olarak belirlenmiş olabilir ve bir Öznitelikin (Tip 1C ve 2C) kullanımı ile ilgili koşullar olabilir. Örnekler: MR Görüntüsü IOD, BT Görüntüsü IOD, Yazdırma İşi IOD.
Birleşik Fotoğraf Uzmanları Grubu (JPEG) – DICOM uygulamaları tarafından kullanılabilen, standart görüntü sıkıştırma teknikleri dizisi.

Değer Gösterimi (VR) – metin, tamsayı, bir kişinin adı veya bir kod gibi bağımsız bir DICOM veri ögesinin biçimlendirme tipi. DICOM bilgi nesneleri, her veri ögesinin (Açık VR) açık tanımlaması ile birlikte veya açık tanımlama olmadan (Örtük VR) aktanabilir; Açık VR durumunda alıcı uygulama, her veri ögesinin biçimini aramak için bir DICOM veri sözlüğü kullanmalıdır.

Etiket – bir veri ögesi için, “grup” ve “öge” şeklinde, dört basamaklı onaltılı bir çift olarak temsil edilen 32 bit bir tanımlayıcı. “Grup” numarası tek sayı ise, etiket özel (üreticinin veya ngộprü) bir veri ögesine yönlendirir. Örnekler: (0010,0020) [Hasta Kimliği], (07FE,0010) [Piksel Verisi], (0019,0210) [özel veri ögesi].

Görüüşme – Uygulama Varlıklarının, değiştirilecek veri türleri ve bu verilerin nasıl kodlanacağı hakkında uzlaşma车载ığı ilk İlişki kurma aşaması.

Güvenlik Profili – gizlilik, bütünlük ve/veya değişirilen DICOM verilerinin kullanılabilirliğini sağlamak için bir Uygulama Varlığı tarafından kullanılan şifreleme, kullanıcı kimlik doğrulaması veya dijital imzalar gibi bir mekanizma dizisi.

Hizmet Sınıfı Kullanıcısı (SCU) – bir DICOM ağ hizmetini kullanan bir Uygulama Varlığının görevi; genellikle bir istemci. Örnekler: görüntüleme modalitesi (görüntü depolama SCU ve modalite iş listesi SCU), görüntüleme iş istasyonu (görüntü sorgulama/alfa SCU).

Hizmet Sınıfı Tedarikçisi (SCP) – bir DICOM ağ hizmetini sağlayan bir Uygulama Varlığının görevi; genellikle, diğer bir Uygulama Varlığı tarafından istenen işlemlerin gerçekleştirilip sunucusu (Hizmet Sınıf Kullanıcısı). Örnekler: Görüntü Arşivleme ve İletişim Sistemi (görüntü depolama SCP ve görüntü sorgulama/alma SCP), Radyoloji Bilgi Sistemi (modalite iş listesi SCP).

Hizmet/Nesne Çifti (SOP) Örneği – bir bilgi nesnesi; bir SOP sınıfında değiştirilen belirli bir özel bilgi olayı. Örnekler: bir ultrason görüntüyü.

Öznitelik – bir nesne tanımladığı bir bilgi ögesi; bir etiket ile tanımlanmış veri ögesi. Bilginin kendisi düşük seviye veri öğelerinden oluşan karmaşık bir veri yapısı (Sekans) olabilir. Örnekler: Hasta Kimliği (0010,0020), Erişim Numarası (0008,0050).
Protokol Veri Birimi (PDU) – ağ üzerinden gönderilen bir DICOM mesajının paketi (parçası). Cihazlar, DICOM mesajları için alnabilen maksimum paket boyutunu belirlemelidir.

Sunum İçeriği – Uygulama Varlıkları arasında görüşüldüğü gibi, bir İlişki üzerinden kullanılan DICOM ağ hizmetleri dizisi; Özet Söz Dizimleri ve Aktarım Söz Dizimlerini içerir.

Uygulama Varlığı (AE) – DICOM ağı veya ortam arayüz yazılımı dahil olmak üzere, DICOM bilgi nesnelerini veya mesajlarını gönderen cihazın, DICOM bilgi değişiminin bittiği noktasi. Tek bir cihazda birden fazla Uygulama Varlığı bulunur.

Uygulama Varlığı Başlığı – bir Uygulama Varlığının harici olarak bilinen adı, bir DICOM uygulamasını ağındaki diğer DICOM uygulamalarına tanımlamak için kullanılır.

3.5. DICOM İLETİŞİMİNİN TEMELLERİ

DICOM protokolünü kullanan bir ağ üzerinden birbirleri ile iletişim kurmak isteyen _iki Uygulama Varlığı_ (cihazlar) öncelikle, ilk ağ “uyuşması” sırasında birkaç husus üzerinde anlaşmalıdır. İki cihazdan biri, bir İlişki başlatmalı (diğer cihazla bağlantı) ve belirli hizmetler, bilgiler ve kodlamaların diğer cihaz tarafından desteklenip desteklenmediğini sormalıdır (**Görüşme**).

DICOM, Görüşme için her biri **Özet Söz Dizimi** olarak adlandırılan bir dizi ağ hizmeti ve bilgi nesnesi türü kullanır. Ayrıca, **DICOM Aktarım Söz Dizimleri** olarak adlandırılan çeşitli veri kodlama yöntemleri de kullanır. Görüşme, Uygulama Varlığının İlişkide kullanıcak olan **Özet Söz Dizimi** ve **Aktarım Söz Dizimi** kombinasyonlarını önermeye balasaması sağlar; bu kombinasyonlar **Sunum İçeriği** olarak adlandırılır. Alıcı Uygulama Varlığı desteklediği **Sunum İçeriğini** kabul eder.

Her bir Sunum İçeriği için İlişki Görüşmesi, cihazlarının **Hizmet Sınıfı Kullancısı** (SCU istemci) ve **Hizmet Sınıfı Tedarikçisi** (SCP sunucu) şeklindeki Görevler üzerinde anlaşmasını sağlar. Normalde bağlantısı başlatan cihaz SCU'dur, örneğin, her zaman olmamak üzere istemci sistemi sunucuyu arar.

İlişki Görüşmesi son olarak maksimum ağ paketi (PDU) boyutu, _güvenlik_ bilgileri ve ağ hizmeti seçeneklerinin (Genişletilmiş Görüşme bilgileri olarak adlandırılır) değişimine olanak verir.

İlişki parametrelerini gerçek Uygulama Varlıklarını artık veri değişimini başlatabilir. Genel veri değişimleri arasında, işlem listeleri ve saklanan görüntülerin listesi için sorgulamalar, görüntü nesnelerinin aktarımı ve analizleri (yapilandırılmış raporlar) ile görüntüleri film yazıcılara gönderme bulunur. Değiştirilebilen her veri öğesi, uygun **Bilgi Nesnesi Tanımına** uygulan bir gönderici tarafından biçimlendirilir ve görüşülen **Aktarım Söz Dizimi** kullanılarak gönderilir. Tüm sistemlerin kabul etmesi gereken Varsaylan Aktarım Söz Dizimi mevcuttur ancak bazı kullanıcının durumları için verimli seçeneğ olmayabilir. Her aktarım, başarılı, başarısız ya da bu sorgulama veya alma işlemlerinin hala devam etmekte olduğunu gösteren bir Yanıt Durumu ile alıcı tarafından açık bir şekilde onaylanır.
Ayrıca, İki Uygulama Varlığı ortam (bir CD-R gibi) değişimine de birbiri ile iletişim kurabilir. Olası İlişki Görüşmesi olmadığı için, her iki varlık da “önceden görüşülen” değişim ortam biçimini, Özet Söz Dizimini ve Aktarım Söz Dizimini belirten bir Ortam Uygulama Profili kullanır.

3.6. KISALTMA

Bu belgede aşağıdaki kısaltmalar kullanılır.

<table>
<thead>
<tr>
<th>Kısaltma</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology (Amerikan Radyoloji Derneği)</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine (Tıpta Dijital Görüntüleme ve İletişim)</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association (Ulusal Elektrik Üreticileri Birliği)</td>
</tr>
<tr>
<td>AE</td>
<td>Application Entity (Uygulama Varlığı)</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit (Protokol Veri Öğesi)</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider (Hizmet Sınıfı Tedarikçisi)</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User (Hizmet Sınıfı Kullanıcısı)</td>
</tr>
<tr>
<td>SOP</td>
<td>Service-Object Pair (Hizmet-Nesne Çifti)</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol (İletim Denetim Protokolü/İnternet Protokolü)</td>
</tr>
<tr>
<td>UID</td>
<td>Unique Identifier (Benzersiz Tanımlayıcı)</td>
</tr>
<tr>
<td>LEE</td>
<td>Little Endian Explicit (Yüksek Son Haneli Açık Değer)</td>
</tr>
<tr>
<td>LEI</td>
<td>Little Endian Implicit (Yüksek Son Haneli Örtük Değer)</td>
</tr>
<tr>
<td>BEE</td>
<td>Big Endian Explicit (Düşük Son Haneli Açık Değer)</td>
</tr>
</tbody>
</table>

3.7. REFERANSLAR

<table>
<thead>
<tr>
<th>Gün</th>
<th>Acıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: Hizmet Sınıfı Teknik Özelliklerine web sitesinden ücretsiz olarak erişilebilir.</td>
</tr>
</tbody>
</table>
4. AĞ KURMA

4.1. UYGULAMA MODELİ

4.1.1. Uygulama Veri Akışı

4.1.2. AE'lerin İşlevsel Tanımı

4.1.2.1. Depolama Uygulama Varlığının İşlevsel Tanımı

Kullanıcı, Site-Rite® 8 Ultrason Sistemi DICOM uygulamasında yerel olarak saklanan görüntü dizisini seçer ve Depolama AE'sini etkinleştirmek için DICOM Aktarma (Gönder) düğmesini seçer. Bir İlişkilendirme isteği önceden yapılandırılmış hedef AE'ye gönderilir ve bir Sunum İçeriğinin başarılı görüşmesinden sonra görüntü aktarımı başlatılır. İlişkili kurulamazsa, kullanıcı derhal bir hata bildirimi ile bilgilendirilir ve ayrıntıların güvencesi tutulur. Varsayılan olarak, Depolama AE'si bir hata durumunda başka bir ilişki başlatmaya çalışmayacaktır.
4.1.2.2. Gerçek Dünya Aktivitelerinin Şekası

![Diagram]

1. Kullanıcı hasta ve tetkik bilgilerini girer
2. Kullanıcı bir görüntüyü yakalar
3. Kullanıcı görüntüyü seçer ve gönderir
4. Alınan Görüntüleri Saklar

Şekil 4.1-2
SEKANS KISITLAMALARI

Normal iş akışı koşullarında, Şekil 4.1-2’de gösterilen sekans kısıtlamaları geçerlidir:

1. Uygun olduğu durumda, kullanıcı hasta ve tetkik bilgilerini girer veya günceller.
2. Kullanıcı tetkik sırasında bir görüntüyü yakalar.
4. Uygulama, tetkik için girilen hasta bilgilerini okur, DICOM örnekleri oluşturur ve seçilen DICOM örneğini uzak bir AE’ye gönderir.

4.2. AE TEKNİK ÖZELLİKLERİ

4.2.1. Depolama Uygulama Varlığı Teknik Özellikleri

4.2.1.1. SOP Sınıfları

Site-Rite® 8 Ultrasound Sistemi DICOM Uygulaması, aşağıdaki SOP Sınıfları için Standart Uyguluk sağlar.

<table>
<thead>
<tr>
<th>SOP Sınıfı Adı</th>
<th>SOP Sınıfı UID</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound Görüntü Depolama</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Evet</td>
<td>Hayır</td>
</tr>
<tr>
<td>İkincil Yakalama Görüntü Depolama</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Evet</td>
<td>Hayır</td>
</tr>
</tbody>
</table>
4.2.1.2. İlişki Politikaları

4.2.1.2.1. Genel

DICOM 3.0 için DICOM standart uygulama içeriği adı her zaman önerilir:

<table>
<thead>
<tr>
<th>Table 4.2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE Depolama İçin DICOM Uygulama İçeriği</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Uygulama İçeriği Adı</td>
</tr>
</tbody>
</table>

4.2.1.2.2. İlişki Sayısı

Site-Rite® 8 Ultrason Sistemi DICOM Uygulaması, kullanıcı tarafından etkinleştirilen bir aktarma isteğinin işlenmekte olduğu her hedef için bir seferde bir ilişki başlatır. Bir seferde sadece bir aktarma işi etkin olur, diğerleri etkin aktarma isteği tamamlanana veya başarısız olana kadar beklemeye kalır.

<table>
<thead>
<tr>
<th>Table 4.2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE Depolama İçin Başlatılan İlişki Sayısı</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Maksimum Eş Zamanlı İlişki Sayısı</td>
</tr>
</tbody>
</table>

4.2.1.2.3. Asenkron Yapı

Site-Rite® 8 Ultrason Sistemi DICOM Uygulaması, asenkron iletişimi desteklemez (örn. tek bir ilişki üzerinden birden çok devam eden işlem).

<table>
<thead>
<tr>
<th>Table 4.2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depolama İçin SCU Olarak Asenkron Yapı</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Maksimum devam eden asenkron işlem sayısı</td>
</tr>
</tbody>
</table>

4.2.1.2.4. Uygulama Tanımlama Bilgileri

Bu Uygulama Varlığı için uygulama bilgileri şu şekildedir:

<table>
<thead>
<tr>
<th>Table 4.2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM Uygulama Sınıfı</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Uygulama Sınıfı UID</td>
</tr>
</tbody>
</table>

4.2.1.3. İlişki Başlatma Politikası

4.2.1.3.1. Aktivite – Görüntüleri Gönder

4.2.1.3.1.1. Aktivitelerin Tanımı ve Sekansı

Kullanıcı görüntüleri seçip, bunların uygulamanın kullanıcı arayüzünden önceden yapılandırılmış bir hedefe gönderilmesini isteyebilir. Her istek, gönder düğmesinin seçilmesi üzerine hemen gerçekleştirildir ve kullanıcı aktarım durumu hakkında bilgilendirilir.

Depolama AE’si, bir C-STORE isteği bildirmek için yeni bir ilişki başlatmaya çalışır. Kullanıcı seçimi birden fazla görüntü içerirse, sıralı düzende her görüntü için aynı bir ilişki görüşülür.

Şekil 4.2-6
Aktivite Sekansı – Görüntüleri Gönder

Depolama AE'si ve Uzak AE arasındaki ilişki dizisi (Bir SCP Olarak Depolama Hizmeti Sınıfını destekleyen PACS Arşivi veya Görüntü yöneticisi) Şekil 4.2-6'da gösterilmiştir:

1. Kullanıcı aktarım için bir veya birkaç görüntü seçer.
2. Seçilen her görüntü için, Depolama AE’si Uzak AE'ye sahip bir ilişki açar.
4. Depolama AE’si ilişkinı kapatır.
5. Depolama AE’si, tüm görüntüler aktarılana kadar yukarıdaki 2-4. adımları izleyerek sonraki görüntüyü sıralı olarak işler.
4.2.1.3.1.2. Önerilen Sunum İçerikleri

Site~Rite® 8 Ultrason Sistemi DICOM uygulaması, aşağıdaki tabloda gösterilen herhangi bir Sunum İçeriğini önerebilir:

Tablo 4.2-7

<table>
<thead>
<tr>
<th>Sonum İçeriği Tablosu</th>
<th>Özet Söz Dizimi</th>
<th>Aktarım Söz Dizimi</th>
<th>Görev</th>
<th>Har. Gör.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound Görüntü Depolama</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Bkz. Tablo 4.2-8</td>
<td>Bkz. Tablo 4.2-8</td>
<td>SCU</td>
</tr>
<tr>
<td>İkincil Yakalama Görüntü Depolama</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Bkz. Tablo 4.2-8</td>
<td>Bkz. Tablo 4.2-8</td>
<td>SCU</td>
</tr>
</tbody>
</table>

Tablo 4.2-8

<table>
<thead>
<tr>
<th>Önerilen Aktarım Söz Dizimi</th>
<th>Aktarım Söz Dizimi Adı</th>
<th>Aktarım Söz Dizimi UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yüksek Son Haneli Örtük VR (DICOM Varsayılan)</td>
<td>1.2.840.10008.1.2</td>
<td></td>
</tr>
<tr>
<td>Yüksek Son Haneli Açık VR</td>
<td>1.2.840.10008.1.2.1</td>
<td></td>
</tr>
<tr>
<td>Düşük Son Haneli Açık VR</td>
<td>1.2.840.10008.1.2.2</td>
<td></td>
</tr>
</tbody>
</table>

Tablo 4.2-9

<table>
<thead>
<tr>
<th>Sikistirma</th>
<th>Aktarım Söz Dizimi Adı</th>
<th>Aktarım Söz Dizimi UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG Kayıpsız</td>
<td>1.2.840.10008.1.2.4.70</td>
<td></td>
</tr>
</tbody>
</table>

Bir görüntüyü aktarma sürecinde, Site~Rite® 8 Ultrason Sistemi DICOM uygulaması, birden fazla sunum içeriğinde aynı özet söz dizimini içerecektir (örn. görüntü örneğinin SOP Sınıfı). Her Özet Söz Dizimi ve Aktarım Söz Dizimi çifti benzersizdir ve önerilen içeriklerden biri, her özet söz dizimi için DICOM varsayılan aktarım söz dizimini (örn. Yüksek Son Haneli Örtük VR) içerecektir. Doğrulama SOP Sınıfı içeren bir sunum içeriği Depolama AE'si tarafından her zaman ilski isteğine dahil edilir.

4.2.1.3.1.3. SOP'ye Özel Uygulan Gülültü Depolama SOP Sınıfları

Depolama AE'si tarafından desteklenen tüm Görüntü Depolama SOP Sınıfları, belirtildiği yer dışında aynı davranışı gösterir ve bu bölümde birlikte açıklanır.

Kullanıcının seçtiği görüntü örneğinin Depolama SOP Sınıfına göre, Depolama AE'si, uzak AE'ye, her biri Depolama AE'si tarafından desteklenen farklı bir aktarım söz dizimi içeren birden fazla sunum içeriğine sahip bir ilski isteği önerir. İşlenmekte olan seçilen görüntü örneğinin Depolama SOP Sınıfı ile eşlesen sunum içeriklerinden hiçbir kabul edilemezse, kullanıcı hata durumu ile ilgili olarak uygun şekilde bilgilendirilir.

Aynı Özet Söz Dizimi için Uzak AE tarafından birden fazla sunum içeriği kabul edilirse, C_STORE işleminden önce, Depolama AE'si varsayılan olarak, seçilen görüntüye bağlı olarak sunum içeriğini alır (örn. Ultrason veya İkincil Yakalama).
C-STORE yanıtında bir durum kodu ile karşılaşıldığında Depolama AE'sinin davranış aşağıdaki tabloda özetlenmiştir:

<table>
<thead>
<tr>
<th>Hizmet Durum</th>
<th>Bağla Anlam</th>
<th>Hata Kodu</th>
<th>Davranış</th>
</tr>
</thead>
<tbody>
<tr>
<td>Başarılı</td>
<td>Başarılı</td>
<td>0000</td>
<td>SCP, SOP Örneğini başarılı bir şekilde saklar. Biraktarım isteğinde seçilen tüm SOP Örnekleri başarılı durumuna sahipse, aktarım başarılı olarak değerlendirilir ve kullanıcı bilgilendirilir.</td>
</tr>
<tr>
<td>Uyarı</td>
<td>Uyarı</td>
<td>B000-BFFF</td>
<td>Görüntü aktarımı başarılı olarak değerlendirilir.</td>
</tr>
</tbody>
</table>

Dubinsel hatası sırasında Depolama AE'sinin davranışı aşağıdaki tabloda özetlenmiştir:

<table>
<thead>
<tr>
<th>İstisna</th>
<th>Davranış</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaman Aşımı</td>
<td>İlişki, A-ABORT kullanılarak iptal edilir ve aktarım işi başarısız olarak değerlendirilir. Sonuç günlük dosyasına kaydedilir.</td>
</tr>
<tr>
<td>İlişki SCP veya ağı katmanı tarafından iptal edilir</td>
<td>Aktarım işi başarısız olarak değerlendirilir. Sonuç, günlük dosyası ile kullanıcuya bildirilir.</td>
</tr>
</tbody>
</table>

Not: Günlük dosyası, “shift+cntrl+L” tuşları seçilerek bir USB depolama aygıtına kaydedilebilir.

Başarısız bir aktarım, kullanıcı etkileşimi ile yeniden başlatılabilir. Uygulama, aktarılamanan dosyaları otomatik olarak yeniden göndermeye çalışmas.

Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulan farklı Görüntü Depolama SOP Örneklerinin içerikleri, DICOM Standardının PS 3.3 Görüntü IOD tanımına uyur ve bölüm 6.1’de açıklanmıştır.

4.3. İLETİŞİM PROFİLLERİ
Site~Rite® 8 Ultrason Sistemi DICOM Uygulaması, DICOM Standardının 8. Bölümünde tanımlandığı gibi, DICOM V3.0 TCP/IP Ağ İletişim desteği sağlar.

4.3.1. TCP/IP Yığıını
Site~Rite® 8 Ultrason Sistemi DICOM Uygulaması, yürütülgü bilgisayar sisteminden TCP/IP yığıını kaliti alır.

4.3.1.1. Fiziksel Ortam Desteği
Site~Rite® 8 Ultrason Sistemi DICOM uygulaması, TCP/IP'nin yürütüldüğü fiziksel ortama duyarlıdır; ortamı yürütüldüğü bilgisayar sisteminden devralır.

4.4. İLAVERLER/ÖZELLEŞMELER/ÖZELLEŞTİRMELER
Uygulanamaz.
4.5. YAPILANDIRMA

4.5.1. AE Başlığı/Sunum Adresi Eşleştirme

4.5.1.1. Yerel AE Başlıkları

Depolama AE’si için yapılabilir tek bir yerel AE başlığı mevcuttur. Bu yapılandırma kullanıcı tarafından değiştirilebilir.

4.5.1.2. Uzak AE Başlıkları

Site~Rite® 8 Ultrason Sistemi DICOM Uygulaması sadece tek bir AE yapılandırmasına izin verir. Uzak AE Başlığı, uzak sunucunun ana bilgisayar adresi (IP adresi) ve port numarası kurulum sırasında yapılandırılmalıdır. Kullanıcı uzak AE, ana bilgisayar adresi ve port numarası yapılandırmasını herhangi bir zamanda değiştirebilir.

4.5.1.2.1. Uzak SCP

Aşağıdaki tablo, uzak SCP için yapılandırma seçeneklerini tanımlar:

<table>
<thead>
<tr>
<th>Tablo 4.5-1 Uzak SCP Yapılandırması Parametreleri Tablosu</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCP Ayarları</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Depolama Uygulama Varlığı Başlığı</td>
</tr>
<tr>
<td>Uzak Uygulama Varlığı Başlığı</td>
</tr>
<tr>
<td>Uzak IP Adresi</td>
</tr>
<tr>
<td>Uzak TCP Portu</td>
</tr>
<tr>
<td>Aktarım Söz Dizimi</td>
</tr>
<tr>
<td>Sıkıştirma</td>
</tr>
</tbody>
</table>

4.6. GENİŞLETİLMİŞ KARAKTER KÜMELERİ İÇİN DESTEK

Site~Rite® 8 Ultrason Sistemi DICOM Uygulaması, aşağıdaki karakter kümelerini destekler:
- ISO-IR 6 (varsayılan): Temel G0 Kümesi
- ISO-IR 100: Latin Alfabesi No. 1

Ayrıca, Site~Rite® 8 Ultrason Sistemi DICOM Uygulaması, Hasta Adı, Tetkik Açıklaması gibi geçerli Değer Gösterimlerinde aşağıdaki Karakter Dağarcığının kullanımını destekler:

5. ORTAM DEĞİŞİMİ

Site~Rite® 8 Ultrason Sistemi DICOM Uygulaması, Ortam Depolama desteklemez.
6. EKLER

6.1. IOD İÇERİĞİ

6.1.1. Oluşturulan SOP Örneği/Örnekleri

Tablo 6.1-1, Site~Rite® 8 Ultrason Sistemi DICOM uygulamasının Depolama AE'si tarafından aktarılan Ultrason/İkincil Yakalama Görüntüsünün özneteliklerini belirtmektedir.

Aşağıdaki tablolarda birkaç kısaltma kullanılmaktadır. “… varlığı” sütununda kullanılan kısaltmalar şu şekildedir:

<table>
<thead>
<tr>
<th>Kısaltma</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGZY</td>
<td>Değer Her Zaman Yok (hiçbir değer yoksa öznetelik sıfır uzunluk gönderilir)</td>
</tr>
<tr>
<td>ÖHZY</td>
<td>Öznetelik Her Zaman Yok</td>
</tr>
<tr>
<td>HER ZAMAN</td>
<td>Her Zaman Mevcut</td>
</tr>
<tr>
<td>BOŞ</td>
<td>Öznetelik değer olmadan gönderilir</td>
</tr>
</tbody>
</table>

“Kaynak” sütununda kullanılan kısaltmalar şu şekildedir:

<table>
<thead>
<tr>
<th>Kısaltma</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>KULLANICI</td>
<td>Öznetelik değer kaynağı Kullanıcı girişine aittir</td>
</tr>
<tr>
<td>OTOMATİK</td>
<td>Öznetelik değeri otomatik olarak oluşturulur</td>
</tr>
<tr>
<td>YAPILANDIRMA</td>
<td>Öznetelik değer kaynağı yapılandırılır olabilir bir parametredir</td>
</tr>
</tbody>
</table>

6.1.1.1. İkincil Yakalama Görüntü IOD

<table>
<thead>
<tr>
<th>IED</th>
<th>Modül</th>
<th>Referans</th>
<th>Modülden Varlığı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta</td>
<td>Hasta Adı</td>
<td>Tablo 6.1-2</td>
<td>HER ZAMAN</td>
</tr>
<tr>
<td>Tavsiye</td>
<td>Genel Tavsiye</td>
<td>Tablo 6.1-3</td>
<td>HER ZAMAN</td>
</tr>
<tr>
<td>Dizi</td>
<td>Genel Dizi</td>
<td>Tablo 6.1-4</td>
<td>HER ZAMAN</td>
</tr>
<tr>
<td>Ekipman</td>
<td>SC Ekipmanı</td>
<td>Tablo 6.1-5</td>
<td>HER ZAMAN</td>
</tr>
<tr>
<td>Görüntü</td>
<td>Genel Görüntü</td>
<td>Tablo 6.1-6</td>
<td>HER ZAMAN</td>
</tr>
<tr>
<td></td>
<td>Görüntü Pikseli</td>
<td>Tablo 6.1-7</td>
<td>HER ZAMAN</td>
</tr>
<tr>
<td></td>
<td>SC Görüntüsü</td>
<td>Tablo 6.1-8</td>
<td>HER ZAMAN</td>
</tr>
<tr>
<td></td>
<td>SOP Ortak</td>
<td>Tablo 6.1-9</td>
<td>HER ZAMAN</td>
</tr>
</tbody>
</table>

6.1.1.2. Ortak Modül

<table>
<thead>
<tr>
<th>Öznetelik Adı</th>
<th>Etiket</th>
<th>VR</th>
<th>Değer</th>
<th>Değerin Varlığı</th>
<th>Kaynak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta Adı</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Kullanıcı giriş veya komut dosyası. En fazla 64 karakter</td>
<td>HER ZAMAN</td>
<td>KULLANICI</td>
</tr>
<tr>
<td>Hasta Kimliği</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Kullanıcı giriş veya komut dosyası. En fazla 64 karakter</td>
<td>HER ZAMAN</td>
<td>KULLANICI</td>
</tr>
<tr>
<td>Hastanın Doğum Tarihi</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Her zaman boş. Sıfır Uzunluk</td>
<td>DGZY</td>
<td>KULLANICI</td>
</tr>
<tr>
<td>Hastanın Cinsiyeti</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Kullanıcı giriş veya komut dosyası</td>
<td>HER ZAMAN</td>
<td>KULLANICI</td>
</tr>
</tbody>
</table>
Tablo 6.1-3

OLUŞTURULAN SOP ÖRNEKLERİ İLE İLGİLİ GENEL TETKİK MODÜLÜ

<table>
<thead>
<tr>
<th>Öznitelik Adı</th>
<th>Etiket</th>
<th>VR</th>
<th>Değer</th>
<th>Değerin Varlığı</th>
<th>Kaynak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetkik Öneği UID</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Tetkik Tarihi</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Her zaman boş</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Tetkik Saati</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Her zaman boş</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Erişim Numarası</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Her zaman boş</td>
<td>DGZY</td>
<td>OTOMATİK</td>
</tr>
</tbody>
</table>

Tablo 6.1-4

OLUŞTURULAN SOP ÖRNEKLERİ İLE İLGİLİ GENEL DİZİ MODÜLÜ

<table>
<thead>
<tr>
<th>Öznitelik Adı</th>
<th>Etiket</th>
<th>VR</th>
<th>Değer</th>
<th>Değerin Varlığı</th>
<th>Kaynak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalite</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Dizi Örnek UID</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
</tbody>
</table>

6.1.1.3. İkincil Yakalama Görüntü Modülleri

Tablo 6.1-5

OLUŞTURULAN SOP ÖRNEKLERİ İLE İLGİLİ SC EKİPMANI MODÜLÜ

<table>
<thead>
<tr>
<th>Öznitelik Adı</th>
<th>Etiket</th>
<th>VR</th>
<th>Değer</th>
<th>Değerin Varlığı</th>
<th>Kaynak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalite</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Dönüştürme Türü</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
</tbody>
</table>

Tablo 6.1-6

OLUŞTURULAN SOP ÖRNEKLERİ İLE İLGİLİ GENEL GÖRÜNTÜ MODÜLÜ

<table>
<thead>
<tr>
<th>Öznitelik Adı</th>
<th>Etiket</th>
<th>VR</th>
<th>Değer</th>
<th>Değerin Varlığı</th>
<th>Kaynak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Görüntü Tipi</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Türetme Açıklaması</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Kayıplı Görüntü Sıkıştırma</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
</tbody>
</table>
Tablo 6.1-7

OLUŞTURULAN SOP ÖRNEKLERİ İLE İLGİLİ GÖRÜNTÜ PIKSEL MODÜLÜ

<table>
<thead>
<tr>
<th>Öznitelik Adı</th>
<th>Etiket</th>
<th>VR</th>
<th>Değer</th>
<th>Değerin Varlığı</th>
<th>Kaynak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piksel Verileri</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Kullanıcının seçilen görüntü dosyaları (örn. JPEG)</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Piksel Başına Örnek Sayısı</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Fotometrik Yorumlama</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Düzlemsel Yapılandırma</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Satırlar</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Sütunlar</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Atanan Bitler</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Saklanan Bitler</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Yüksek Bit</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Piksel Gösterimi</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
</tbody>
</table>

Tablo 6.1-8

OLUŞTURULAN SOP ÖRNEKLERİ İLE İLGİLİ SC GÖRÜNTÜSÜ MODÜLÜ

<table>
<thead>
<tr>
<th>Öznitelik Adı</th>
<th>Etiket</th>
<th>VR</th>
<th>Değer</th>
<th>Değerin Varlığı</th>
<th>Kaynak</th>
</tr>
</thead>
<tbody>
<tr>
<td>İkinci Yakalama Tarihi</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Görüntü dosyası (örn. JPEG) oluşturulma tarihi</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>İkinci Yakalama Saati</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Görüntü dosyası (örn. JPEG) oluşturulma saati</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Özellik Adı</td>
<td>Etiket</td>
<td>VR</td>
<td>Değer</td>
<td>Değerin Varlığı</td>
<td>Kaynak</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Özel Karakter Kümesi</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>"IOS_IR 100" veya "ISO_IR_144"</td>
<td>OHZY</td>
<td>YAPILANDIRMA</td>
</tr>
<tr>
<td>SOP Sınıfı UID</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>“1.2.840.10008.5.1.4.1.1.7”</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>SOP Örneği UID</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
<tr>
<td>Kodlama Şeması Göstergesi</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Site~Rite® 8 Ultrason Sistemi DICOM tarafından oluşturulur</td>
<td>HER ZAMAN</td>
<td>OTOMATİK</td>
</tr>
</tbody>
</table>
Заявление о соответствии стандарту DICOM для приложения DICOM ультразвуковой системы Site~Rite® 8

Название компании: BARD Access Systems, Inc.

Название продукта: приложение DICOM ультразвуковой системы Site~Rite® 8

Версия: 1.0-ред. А-1

Внутренний номер документа: 1190674

Дата: 20 апреля 2015 г.
1. ОБЗОР ЗАЯВЛЕНИЯ О СООТВЕТСТВИИ

Приложение DICOM ультразвуковой системы Site–Rite® 8 принимает стандартные растровые изображения в формате JPEG от ультразвукового устройства и создает DICOM-экземпляры ультразвуковых изображений и DICOM-экземпляры изображений вторичной съемки для поддержки волновых изображений ЭКГ на основании выбранной информации о пациенте. Кроме того, оно позволяет пользователю вручную вводить информацию о пациенте и исследовании. В нем также реализованы необходимые службы DICOM для передачи изображений в архив PACS.

В таблице 1-1 представлен обзор сетевых служб, выполняемых приложением DICOM ультразвуковой системы Site–Rite® 8.

<table>
<thead>
<tr>
<th>Сетевая служба</th>
<th>Классы пар служба-объект</th>
<th>Пользователь службы (пользователь класса службы)</th>
<th>Поставщик службы (поставщик класса службы)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Передача</td>
<td>Ультразвуковое изображение</td>
<td>Да</td>
<td>Нет</td>
</tr>
<tr>
<td></td>
<td>Изображение вторичной съемки</td>
<td>Да</td>
<td>Нет</td>
</tr>
</tbody>
</table>
2. СОДЕРЖАНИЕ

1. ОБЗОР ЗАЯВЛЕНИЯ О СООТВЕТСТВИИ ... 2
2. СОДЕРЖАНИЕ ... 3
3. ВВЕДЕНИЕ ... 4
 3.1. ИСТОРИЯ РЕДАКЦИЙ .. 4
 3.2. ЦЕЛЕВЫЕ ПОЛЬЗОВАТЕЛИ ... 5
 3.3. ПРИМЕЧАНИЯ .. 5
 3.4. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ... 5
 3.5. ОСНОВЫ СВЯЗИ DICOM .. 7
 3.6. СОКРАЩЕНИЯ .. 8
 3.7. СПИСОК ЛИТЕРАТУРЫ .. 8
4. ОРГАНИЗАЦИЯ СЕТИ ... 9
 4.1. МОДЕЛЬ РЕАЛИЗАЦИИ .. 9
 4.1.1. Поток данных приложения .. 9
 4.1.2. Функциональное определение ПК .. 9
 4.1.2.1. Функциональное определение прикладного компонента хранения 9
 4.1.2.2. Последовательность практических действий 10
 4.1.2.4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПК .. 10
 4.1.2.1.1. Технические характеристики прикладного компонента хранения ... 10
 4.1.2.1.1.1. Классы пар служба-объект ... 10
 4.1.2.1.1.2. Правила связи ... 11
 4.1.2.1.1.3. Общие .. 11
 4.1.2.1.1.4. Число связей ... 11
 4.1.2.1.1.5. Асинхронный характер ... 11
 4.1.2.1.1.6. Информация, определяющая реализацию 11
 4.1.2.1.1.7. Политика инициирования связи .. 12
 4.1.2.1.1.8. Действие: отправка изображений ... 12
 4.1.2.1.1.9. Описание и последовательность действий 12
 4.1.2.1.1.10. Предлагаемые контексты представления данных 13
 4.1.2.1.1.11. Классы ПСО хранения изображений соответствия для конкретных ПСО 14
 4.3. ПРОФИЛИ СВЯЗИ .. 15
 4.3.1. Стек TC1/IP ... 15
 4.3.1.1. Поддержка физических носителей .. 15
 4.4. РАСШИРЕНИЯ, СПЕЦИАЛИЗАЦИИ, ПРИВАТИЗАЦИИ 15
 4.5. КОНФИГУРАЦИЯ .. 15
 4.5.1. Наименование ПК, отображение адресов представления данных 15
 4.5.1.1. Наименования местных ПК ... 15
 4.5.1.2. Наименования удаленных ПК ... 16
 4.5.1.2.1. Удаленный ПосКС .. 16
 4.6. ПОДДЕРЖКА РАСШИРЕННЫХ НАБОРОВ СИМВОЛОВ 16
5. ОБМЕН НОСИТЕЛЯМИ ... 16
6. ПРИЛОЖЕНИЯ ... 17
 6.1. СОДЕРЖИМОЕ ОИО ... 17
 6.1.1. Созданные экземпляры ПСО .. 17
 6.1.1.1. ОИО изображений вторичной съемки .. 17
 6.1.1.2. Общий модуль ... 18
 6.1.1.3. Модули изображений вторичной съемки ... 19

Заявление о соответствии стандарту DICOM для приложения DICOM
ультразвуковой системы Site–Rite®
3. ВВЕДЕНИЕ

3.1. ИСТОРИЯ РЕДАКЦИЙ

<table>
<thead>
<tr>
<th>Версия документа</th>
<th>Дата выпуска</th>
<th>Автор</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24 марта 2015 г.</td>
<td>Тайлер Дерфи (Tyler Durfee)</td>
<td>Первоначальная версия</td>
</tr>
</tbody>
</table>

3.2. ЦЕЛЕВЫЕ ПОЛЬЗОВАТЕЛИ

Данный документ является руководством по интегрированию приложения DICOM ультразвуковой системы Site~Rite® 8 в медицинском учреждении. Целевыми пользователями приложения являются лица, ответственные за общую политику и архитектуру сети визуализации, а также системные интеграторы, которым необходимо иметь точное представление о функциях DICOM продукта. В данном документе содержатся некоторые основные определения DICOM, чтобы любой читатель мог понять, каким образом в данном продукте реализованы функции DICOM. Тем не менее, предполагается, что системные интеграторы в полной мере понимают технологию DICOM, каким образом таблицы в данном документе относятся к функциональным возможностям продукта и каким образом эти функциональные возможности интегрируются с другими устройствами, поддерживающими совместимые функции DICOM.

3.3. ПРИМЕЧАНИЯ

Данное Заявление о соответствии стандарту DICOM должно упростить интеграцию между приложением DICOM ультразвуковой системы Site~Rite® 8 и другими продуктами DICOM. Данное Заявление о соответствии следует читать и понимать с учетом стандарта DICOM. Сама по себе технология DICOM не гарантирует совместимости. Однако Заявление о соответствии упрощает сравнение первого уровня для обеспечения взаимодействия между различными приложениями, поддерживающими совместимые функции DICOM.

Данное Заявление о соответствии не отменяет необходимости проведения проверки с другим оборудованием DICOM для обеспечения надлежащего обмена целевой информацией. В действительности, пользователю следует помнить о следующих важных аспектах:

— сравнение различных Заявлений о соответствии является только первым шагом к оценке взаимосвязанности и взаимодействия данного продукта и другого оборудования, соответствующего стандарту DICOM;
— для подтверждения необходимого уровня взаимодействия с конкретным DICOM-совместимым оборудованием необходимо определить и выполнить процедуры проверки в соответствии с правилами медицинского учреждения.

3.4. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Ниже приведены неофициальные определения следующих терминов, используемых в данном Заявлении о соответствии. Авторитетным источником официальных определений этих терминов является стандарт DICOM.
Абстрактный синтаксис — информация, утвержденная к обмену между приложениями, обычно эквивалентная классу пары служба/объект (ПСО). Примеры: класс ПСО проверки, класс ПСО поиска информационной модели в рабочем списке методов, класс ПСО хранения изображений компьютерной рентгенографии.

Алгоритм сжатия неподвижных изображений, разработанный объединенной экспертной группой по фотографии (JPEG) — набор стандартизованных методов сжатия изображений, доступный для использования приложениями DICOM.

Атрибут — единица информации в определении объекта; элемент данных, определяемый тегом. Информация может представлять собой сложную структуру данных (последовательность) и сама состоять из элементов данных более низкого уровня. Примеры: идентификатор пациента (0010,0020), учетный номер (0008,0050).

Класс пары служба/объект (ПСО) — техническая характеристика передачи по сети или на носителях (службы) определенного типа данных (объекта); фундаментальная единица технической характеристики совместимости DICOM. Примеры: служба хранения ультразвуковых изображений, синтаксис сжатия, синтаксис передачи или информация о пациенте.

Контекст представления данных — набор сетевых служб DICOM, используемых по связи, согласованной между прикладными компонентами; включает абстрактный синтаксис и синтаксис передачи.

Контекст приложения — техническая характеристика типа связи, используемого между прикладными компонентами. Пример: сетевой протокол DICOM.

Модуль — набор логически связанных друг с другом атрибутов в рамках определения информационного объекта. Пример: модуль пациента включает имя пациента, идентификатор пациента, дату рождения пациента и пол пациента.

Название прикладного компонента — внешнее имя прикладного компонента, использующееся для идентификации приложения DICOM другими приложениями DICOM в сети.

Определение информационного объекта (ОИО) — определенный набор атрибутов, составляющих тип объекта данных; представляет собой не конкретный экземпляр объекта данных, а скорее класс схожих объектов данных с одинаковыми свойствами. Атрибуты могут определяться как обязательные (тип 1), необходимые, но, возможно, неизвестные (тип 2) или необязательные (тип 3), а с использованием атрибута могут быть связаны условия (типы 1С и 2С). Примеры: ОИО изображения МРТ, ОИО изображения КТ, ОИО задания на печать.

Пользователь класса службы (ПолКС) — роль прикладного компонента, использующего сетевую службу DICOM; как правило, это клиент. Примеры: устройство получения изображения (ПолКС хранения изображений и ПолКС рабочего списка методов), рабочая станция визуализации (ПолКС запроса/получения изображений).

Поставщик класса службы (ПосКС) — роль прикладного компонента, предоставляющего сетевую службу DICOM; как правило, это сервер, выполняющий операции, запрошенные другим прикладным компонентом (пользователем класса службы). Примеры: система передачи и архивирования изображений (ПосКС хранения изображений и ПосКС запроса/получения изображений), рентгенологическая информационная система (ПосКС рабочего списка методов).
Представление значений (ПЗ) — тип формата отдельного элемента данных DICOM, такого как текст, целое число, имя человека или код. Информационные объекты DICOM могут передаваться либо с явной идентификацией типа каждого элемента данных (явное ПЗ), либо без явной идентификации (неявное ПЗ); при неявном ПЗ принимающее приложение должно использовать словарь данных DICOM для поиска формата каждого элемента данных.

Прикладной компонент (ПК) — конечная точка информационного обмена DICOM, в том числе сеть DICOM или интерфейсная программа носителя; т. е. программное обеспечение, отправляющее или получающее информационные объекты или сообщения DICOM. Одно устройство может иметь несколько прикладных компонентов.

Протокольный блок данных (ПБД) — пакет (часть) сообщения DICOM, отправляемого по сети. Устройства должны указывать максимальный размер пакета, который они могут принимать для сообщений DICOM.

Профиль безопасности — набор механизмов, таких как шифрование, аутентификация пользователей или цифровые подписи, используемых прикладным компонентом для обеспечения конфиденциальности, сохранности и/или доступности обмениваемых данных DICOM.

Профиль применения носителя — техническая характеристика информационных объектов и шифрования DICOM, обмен которыми производится на съемных носителях (напр., на компакт-дисках).

Связь — канал сетевой связи, установленный между прикладным компонентами.

Синтаксис передачи — шифрование, используемое для обмена информационными объектами и сообщениями DICOM. Примеры: сжатие JPEG (для изображений), представление значения в явной форме с прямым порядком байтов.

Согласование — первая фаза установления связи, позволяющая прикладным компонентам согласовать типы обмениваемых данных и способы шифрования данных.

Тег — 32-битный идентификатор элемента данных, представленный в виде пары четырехзначных шестнадцатеричных чисел, «группы» и «элемента». Если число «группы» нечетное, тег относится к частному элементу данных (конкретного производителя). Примеры: (0010,0020) [идентификатор пациента], (07FE,0010) [данные элемента изображения], (0019,0210) [частный элемент данных].

Уникальный идентификатор (УИД) — глобально уникальная строка в десятичном представлении с точкой, определяющая конкретный объект или класс объектов; идентификатор объекта по стандарту ISO-8824. Примеры: УИД экземпляра исследования, УИД класса ПСО, УИД экземпляра ПСО.

Экземпляр пары служба/объект (ПСО) — информационный объект; конкретный случай обмена информацией в классе ПСО. Примеры: конкретное ультразвуковое изображение.
3.5. ОСНОВЫ СВЯЗИ DICOM

В этом разделе описывается терминология, используемая в данном Заявлении о соответствии, для неспециалистов. Основные термины, используемые в Заявлении о соответствии, выделены ниже курсивом. Данный раздел не заменяет собой обучения стандарту DICOM и значительно упрощает значения терминов DICOM.

Два прикладных компонента (устройств), которым необходимо связаться друг с другом по сети с использованием протокола DICOM, сначала должны согласовать несколько параметров во время первичного сетевого «квитирования установления связи». Одно из двух устройств должно инициировать связь (соединение с другим устройством) и запросить, поддерживаются ли другим устройством конкретные службы, информация и шифрование (согласование).

DICOM указывает число сетевых служб и типы информационных объектов, каждый из которых называется абстрактным синтаксисом для согласования. DICOM также указывает различные методы шифрования данных, которые называются синтаксисом передачи. Согласование позволяет инициирующему прикладному компоненту предложить комбинации абстрактного синтаксиса и синтаксиса передачи для использования в связи; эти комбинации называются контекстами представления данных. Получающий прикладной компонент принимает те контексты представления данных, которые он поддерживает.

Для каждого контекста представления данных согласование связи также позволяет устройствам согласовать роли — какая из них является пользователем класса службы (ПолКС — клиент), а какая — поставщиком класса службы (ПосКС — сервер). Обычно ПолКС является устройство, инициирующее связь, т. е. система клиента вызывает сервер, но не всегда.

Наконец, согласование связи позволяет осуществлять обмен максимальным размером сетевых пакетов (ПБД), информацией о безопасности и функциями сетевых служб (это называется информацией расширенного согласования).

После согласования параметров связи прикладные компоненты могут начинать обмен данными. Обычно обмен данными включает запросы на рабочие списки и списки сохраненных изображений, передачу объектов изображений и анализов (структурированных отчетов) и отправку изображений на кинокопировальные аппараты. Каждая обмениваемая единица данных форматируется отправителем в соответствии с необходимым определением информационного объекта и отправляется с использованием согласованного синтаксиса передачи. Существует синтаксис передачи, используемый по умолчанию, который должен принимать все системы, но в некоторых случаях использования он может быть не самым эффективным. Каждая передача в явной форме подтверждается получателем с помощью статуса ответа, указывающего на успешность, неуспешность или на то, что операции запроса или получения все еще выполняются.

Два прикладных компонента также могут связываться друг с другом путем обмена носителями (такими как компакт-дисками CD-R). Поскольку в этом случае согласование связи невозможно, они оба используют профиль применения носителя, в котором указывается «предварительно согласованный» формат носителя, используемого для обмена, абстрактный синтаксис и синтаксис передачи.
3.6. СОКРАЩЕНИЯ

В данном документе используются следующие сокращения и аббrevиатуры:

<table>
<thead>
<tr>
<th>Сокращение</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>Американская коллегия радиологов (American College of Radiology)</td>
</tr>
<tr>
<td>DICOM</td>
<td>Отраслевой стандарт создания, хранения, передачи и визуализации медицинских изображений</td>
</tr>
<tr>
<td>NEMA</td>
<td>Национальная ассоциация производителей электрооборудования (National Electrical Manufacturers Association)</td>
</tr>
<tr>
<td>ПК</td>
<td>Прикладной компонент</td>
</tr>
<tr>
<td>ПБД</td>
<td>Протокольный блок данных</td>
</tr>
<tr>
<td>ПсСК</td>
<td>Поставщик класса службы</td>
</tr>
<tr>
<td>ПсКС</td>
<td>Пользователь класса службы</td>
</tr>
<tr>
<td>ПСО</td>
<td>Пара служба-объект</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Протокол управления передачей данных/интернет-протокол</td>
</tr>
<tr>
<td>УИД</td>
<td>Уникальный идентификатор</td>
</tr>
<tr>
<td>ЯПП</td>
<td>Явный прямой порядок байтов</td>
</tr>
<tr>
<td>НПП</td>
<td>Неявный прямой порядок байтов</td>
</tr>
<tr>
<td>ЯОП</td>
<td>Явный обратный порядок байтов</td>
</tr>
</tbody>
</table>

3.7. СПИСОК ЛИТЕРАТУРЫ

<table>
<thead>
<tr>
<th>Ссылка</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICOM PS3.4</td>
<td>DICOM PS3.4: технические характеристики классов служб, доступны бесплатно по адресу http://medical.nema.org/</td>
</tr>
</tbody>
</table>
4. ОРГАНИЗАЦИЯ СЕТИ

4.1. МОДЕЛЬ РЕАЛИЗАЦИИ

4.1.1. Поток данных приложения

Прикладной компонент хранения приложения DICOM ультразвуковой системы Site~Rite® 8 отправляет изображения на удаленный ПК. Он связан с локальным практическим действием «Отправка изображений». «Отправка изображений» выполняется по запросу пользователя для каждого завершенного исследования или для конкретных выбранных изображений. При активации пользователем через предоставленный пользовательский интерфейс приложения DICOM ультразвуковой системы Site~Rite® 8 каждый отмеченный набор изображений можно сразу же сохранить в предварительно настроенный каталог назначения.

4.1.2. Функциональное определение ПК

4.1.2.1. Функциональное определение прикладного компонента хранения

Пользователь выбирает набор изображений, хранящихся локально в приложении DICOM ультразвуковой системы Site~Rite® 8, и выбирает кнопку передачи (отправки) DICOM для активации ПК хранения. В предварительно настроенный целевой ПК отправляется сопряженный запрос, и после успешного согласования контекста представления данных начинается передача изображения. Если связь не может быть установлена, пользователь немедленно уведомляется с помощью оповещения об ошибке, и информация об этом заносится в журнал. По умолчанию ПК хранения не будет пытаться инициировать другую связь в случае возникновения ошибки.
4.1.2.2. Последовательность практических действий

В условиях нормального рабочего процесса применяются ограничения последовательности действий, проиллюстрированные на рисунке 4.1-2.

1. Пользователь вводит информацию о пациенте и исследовании
2. Пользователь снимает изображение
3. Пользователь выбирает изображение и отправляет его
4. Хранение полученных изображений

Рисунок 4.1-2
ОГРАНИЧЕНИЯ ПОСЛЕДОВАТЕЛЬНОСТИ

4.2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПК

4.2.1. Технические характеристики прикладного компонента хранения

4.2.1.1. Классы пар служба-объект

Приложение DICOM ультразвуковой системы Site–Rite® 8 обеспечивает соответствие стандарту по следующим классам ПСО.
Таблица 4.2-1
Классы ПСО для ПК хранения

<table>
<thead>
<tr>
<th>Название класса ПСО</th>
<th>УИД класса ПСО</th>
<th>ПолКС</th>
<th>ПосКС</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хранение ультразвуковых изображений</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>Да</td>
<td>Нет</td>
</tr>
<tr>
<td>Хранение изображений вторичной съемки</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>Да</td>
<td>Нет</td>
</tr>
</tbody>
</table>

4.2.1.2. Правила связи

4.2.1.2.1. Общие

Всегда предлагается имя прикладного контекста стандарта DICOM для DICOM 3.0.

Таблица 4.2-2
Имя прикладного контекста DICOM для памяти ПК

| Имя прикладного контекста | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. Число связей

Приложение DICOM ультразвуковой системы Site~Rite® 8 инициирует одну связь за раз для каждого места назначения, для которого обрабатывается активированный пользователем запрос передачи. В конкретный момент времени активна только одна задача по передаче, другие остаются в очереди до завершения или сбоя активного запроса передачи.

Таблица 4.2-3
Число связей, инициированных для памяти ПК

| Максимальное число одновременных связей | 1 |

4.2.1.2.3. Асинхронный характер

Приложение DICOM ультразвуковой системы Site~Rite® 8 не поддерживает асинхронную связь (т. е. несколько незавершенных операций по одной связи).

Таблица 4.2-4
Асинхронный характер в качестве ПолКС для хранения

| Максимальное число незавершенных асинхронных операций | 1 |

4.2.1.2.4. Информация, определяющая реализацию

Информация о реализации для данного прикладного компонента следующая.

Таблица 4.2-5
Класс реализации DICOM

| УИД класса реализации | 1.2.826.0.1.3680043.2.360.0.3.5.4 |
4.2.1.3. Политика инициализации связи

4.2.1.3.1. Действие: отправка изображений

4.2.1.3.1.1. Описание и последовательность действий

Пользователь может выбрать изображения и запросить их отправку в предварительно настроенный каталог назначения приложения. Каждый запрос выполняется сразу же после выбора кнопки отправки, и пользователь получает уведомление о статусе передачи.

Когда пользователь активирует передачу DICOM, ПК хранения приложения DICOM ультразвуковой системы Site–Rite® 8 пытается установить связь с предварительно настроенным сервером назначения и инициирует запрос C-STORE для сохранения выбранных изображений. Когда этот процесс успешно устанавливает связь с удаленным прикладным компонентом, он передает каждый выбранный экземпляр, один за другим, по открытой связи. Статус передачи сообщается пользователю через пользовательский интерфейс. Если ответ C-STORE от удаленного приложения содержит какой-либо статус, помимо «Успешно» или «Предупреждение», связь разрывается, и пользователю отправляется уведомление о неуспешном статусе. Пользователь может перезапустить процесс передачи в любой момент.

ПК хранения пытается инициировать новую связь, чтобы выдать запрос C-STORE. Если пользователь выбрал несколько изображений, то для каждого изображения в последовательном порядке согласуется отдельная связь.

![Diagram](image)

Рисунок 4.2-6
Последовательность действий: отправка изображений
Возможная последовательность действий при взаимодействии между ПК хранения и удаленным ПК (архивом PACS или программой управления изображениями, поддерживающей класс службы хранения в качестве ПосКС) проиллюстрирована на рисунке 4.2-6.

1. Пользователь выбирает одно или несколько изображений для передачи.
2. Для каждого выбранного изображения ПК хранения открывает связь с удаленным ПК.
3. Одно выбранное пользователем изображение передается на удаленный ПК с помощью запроса C-STORE, а удаленный ПК выдает ответ C-STORE (успешный статус).
4. ПК хранения закрывает связь.
5. ПК хранения последовательно обрабатывает следующее изображение в соответствии с описанными выше пунктами 2–4, пока все изображения не будут переданы.

4.2.1.3.1.2. Предлагаемые контексты представления данных

Приложение DICOM ультразвуковой системы Site~Rite® 8 может предлагать любые контексты представления данных, приведенные в следующей таблице.

Таблица 4.2-7
ПРЕДЛАГАЕМЫЕ КОНТЕКСТЫ ПРЕДСТАВЛЕНИЯ ДАННЫХ ДЛЯ ДЕЙСТВИЯ «ОТПРАВКА СООБЩЕНИЙ»

<table>
<thead>
<tr>
<th>Имя синтаксиса передачи</th>
<th>УИД синтаксиса передачи</th>
<th>Список с имен</th>
<th>Список УИД</th>
<th>Роль</th>
<th>Расш. согл.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хранение ультразвуковых изображений</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>См. таблицу 4.2-8</td>
<td>См. таблицу 4.2-8</td>
<td>ПолКС</td>
<td>Нет</td>
</tr>
<tr>
<td>Хранение изображений вторичной съемки</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>См. таблицу 4.2-8</td>
<td>См. таблицу 4.2-8</td>
<td>ПолКС</td>
<td>Нет</td>
</tr>
</tbody>
</table>

Таблица 4.2-8
Предлагаемый синтаксис передачи

<table>
<thead>
<tr>
<th>Имя синтаксиса передачи</th>
<th>УИД синтаксиса передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>Неявное ПЗ с прямым порядком байтов (по умолчанию для DICOM)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>Явное ПЗ с прямым порядком байтов</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>Явное ПЗ с обратным порядком байтов</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

Таблица 4.2-9
Сжатие

<table>
<thead>
<tr>
<th>Имя синтаксиса передачи</th>
<th>УИД синтаксиса передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG с потерями</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG без потерь</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

В процессе передачи одного изображения приложение DICOM ультразвуковой системы Site~Rite® 8 будет включать один и тот же абстрактный синтаксис (т. е. класс ПСО экземпляра изображения) в несколько контекстов представления данных. Каждая пара абстрактного синтаксиса и синтаксиса
передачи является уникальной, и один из предложенных контекстов представления данных будет содержать синтаксис передачи по умолчанию для DICOM (т. е. неявное ПЗ с прямым порядком байтов) для каждого абстрактного синтаксиса. ПК хранения всегда включает в сопряженный запрос контекст представления данных с классом ПСО проверки.

4.2.1.3.1.3. Классы ПСО хранения изображений соответствия для конкретных ПСО

Все классы ПСО хранения изображений, поддерживаемые ПК хранения, демонстрируют одинаковое поведение, за исключением оговоренных случаев, и описываются в данном разделе совместно.

На основании класса ПСО хранения выбранного пользователем экземпляра изображения ПК хранения предлагает запрос на установление связи с удаленным ПК с несколькими контекстами представления данных, каждый из которых содержит отличный синтаксис передачи, поддерживаемый ПК хранения. Если ни один из контекстов представления данных, соответствующих классу ПСО хранения обрабатываемого выбранного экземпляра изображения, не принимается, пользователю отправляется соответствующее уведомление об условии невыполнения.

Если удаленный ПК принимает несколько контекстов представления данных для одного и того же абстрактного синтаксиса, ПК хранения по умолчанию выбирает контекст представления данных на основании выбранного изображения (т. е. ультразвуковое изображение или изображение вторичной съемки) перед выполнением процесса C_STORE.

Поведение ПК хранения при получении кода статуса в ответе C_STORE описано в следующей таблице.

<table>
<thead>
<tr>
<th>Служба Статус</th>
<th>Дополнительное значение</th>
<th>Код ошибки</th>
<th>Поведение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Успех</td>
<td>Успех</td>
<td>0000</td>
<td>ПосКС успешно сохранил экземпляр ПСО. Если все выбранные экземпляры ПСО в запросе на передачу имеют статус «Успех», передача считается успешной, и пользователю отправляется соответствующее уведомление.</td>
</tr>
<tr>
<td>Предупреждение</td>
<td>Предупреждение</td>
<td>B000-BFFF</td>
<td>Передача изображения считается успешной.</td>
</tr>
<tr>
<td>*</td>
<td>Ошибка</td>
<td>Любой другой код статуса</td>
<td>ПосКС не удалось сохранить экземпляр.</td>
</tr>
</tbody>
</table>

Поведение ПК хранения при сбое связи описано в следующей таблице.
Заявление о соответствии стандарту DICOM для приложения DICOM ультразвуковой системы Site-Rite® 8

Таблица 4.2-11
Поведение ПК хранения при сбоев связи

<table>
<thead>
<tr>
<th>Исключение</th>
<th>Поведение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Истечение срока ожидания</td>
<td>Связь разрывается с использованием A-ABORT, и задача по передаче считается не выполненной. Причина заносится в файл журнала.</td>
</tr>
<tr>
<td>Связь разрывается ПоСКС или сетевым уровнем</td>
<td>Задача по передаче считается не выполненной. Причина сообщается пользователю через файл журнала.</td>
</tr>
</tbody>
</table>

Примечание. Файл журнала можно сохранить на USB-накопитель, нажав «shift+cntrl+L».

Пользователь может перезапустить невыполненную передачу. Приложение не пытается автоматически повторно отправить файлы, которые не удалось передать.

Содержимое других экземпляров изображений ПСО хранения, созданных приложением DICOM ультразвуковой системы Site-Rite® 8, соответствует определению изображения ОИО PS 3.3 стандарта DICOM и описано в разделе 6.1.

4.3. ПРОФИЛИ СВЯЗИ
Приложение DICOM ультразвуковой системы Site-Rite® 8 обеспечивает поддержку сетевой связи TCP/IP DICOM V3.0 в соответствии с определением, предоставляемым в части 8 стандарта DICOM.

4.3.1. Стек TCP/IP
Приложение DICOM ультразвуковой системы Site-Rite® 8 наследует стек TCP/IP от компьютерной системы, на которой он выполняется.

4.3.1.1. Поддержка физических носителей
В приложении DICOM ультразвуковой системы Site-Rite® 8 не указан предпочтительный физический носитель, на котором выполняется TCP/IP; оно наследует носитель от компьютерной системы, на которой выполняется.

4.4. РАСШИРЕНИЯ, СПЕЦИАЛИЗАЦИИ, ПРИВАТИЗАЦИИ
Не применяются.

4.5. КОНФИГУРАЦИЯ

4.5.1. Наименование ПК, отображение адресов представления данных
Наименования ПК по умолчанию не предоставляются. Наименования локальных и удаленных ПК наряду с адресами хоста удаленного сервера и номерами портов необходимо настраивать. Сконфигурированное наименование местного ПК и информация о соединении сохраняется в системе для дальнейшего использования ПК хранения.

4.5.1.1. Наименования местных ПК
Для ПК хранения имеется только одно настраиваемое наименование локального ПК. Пользователь может изменять эту конфигурацию.
4.5.1.2. Наименования удаленных ПК
Приложение DICOM ультразвуковой системы Site–Rite® 8 позволяет выполнить только одну конфигурацию удаленного ПК. Наименование удаленного ПК, адрес хоста удаленного сервера (т. е. IP-адрес) и номер порта необходимо настроить при установке. Пользователь может в любой момент изменить конфигурацию удаленного ПК, адреса хоста и номера порта.

4.5.1.2.1. Удаленный ПсКС
В приведенной ниже таблице описаны опции конфигурации для удаленного ПсКС.

<table>
<thead>
<tr>
<th>Настройки ПсКС</th>
<th>По умолчанию</th>
<th>Настраиваемые</th>
<th>Опции конфигурации</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наименование прикладного компонента хранения</td>
<td>Нет</td>
<td>Да</td>
<td>Н/Д</td>
</tr>
<tr>
<td>Наименование удаленного прикладного компонента</td>
<td>Нет</td>
<td>Да</td>
<td>Н/Д</td>
</tr>
<tr>
<td>Удаленный IP-адрес</td>
<td>Нет</td>
<td>Да</td>
<td>Н/Д</td>
</tr>
<tr>
<td>Удаленный порт TCP</td>
<td>Нет</td>
<td>Да</td>
<td>Н/Д</td>
</tr>
<tr>
<td>Синтаксис передачи</td>
<td>Нет</td>
<td>Да</td>
<td>ЙАПП, НПП, ЯОП</td>
</tr>
<tr>
<td>Сжатие</td>
<td>Нет</td>
<td>Да</td>
<td>Без потерь, с потерями, нет</td>
</tr>
</tbody>
</table>

4.6. ПОДДЕРЖКА РАСШИРЕНИХ НАБОРОВ СИМВОЛОВ
Приложение DICOM ультразвуковой системы Site–Rite® 8 поддерживает следующие наборы символов:
- ISO-IR 6 (по умолчанию): базовый набор G0;
- ISO-IR 100: латинский алфавит № 1.
Кроме того, приложение DICOM ультразвуковой системы Site–Rite® 8 поддерживает использование следующих наборов символов в соответствующих представлениях значений, таких как имя пациента, описание исследования и описание серии.

5. ОБМЕН НОСИТЕЛЯМИ
Приложение DICOM ультразвуковой системы Site–Rite® 8 не поддерживает хранение на носителях.
6. ПРИЛОЖЕНИЯ

6.1. СОДЕРЖИМОЕ ОИО

6.1.1. Созданные экземпляры ПСО

В таблице 6.1-1 указаны атрибуты ультразвукового изображения/изображения вторичной съемки, передаваемого ПК хранения приложения DICOM ультразвуковой системы Site–Rite® 8.

В следующих таблицах используется ряд аббревиатур. В столбце «Присутствие...» используются следующие аббревиатуры.

ЗНВП Значение не всегда присутствует (если значение отсутствует, отправляется атрибут нулевой длины).

АНВП Атрибут не всегда присутствует.

ВСЕГДА Всегда присутствует.

ПУСТО Атрибут отправляется без значения.

В столбце «Источник» используются следующие сокращения.

ПОЛЬЗ. Источником значения атрибута является введенное пользователем значение.

АВТО Значение атрибута создается автоматически.

КОНФИГ. Значение атрибута является настраиваемым параметром.

6.1.1.1. ОИО изображений вторичной съемки

<table>
<thead>
<tr>
<th>ОИО для созданных экземпляров ПСО ультразвуковых изображений или изображений вторичной съемки</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИЭ</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Пациент</td>
</tr>
<tr>
<td>Исследование</td>
</tr>
<tr>
<td>Серия</td>
</tr>
<tr>
<td>Оборудование</td>
</tr>
<tr>
<td>Изображение</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
6.1.1.2. Общий модуль

Таблица 6.1-2
МОДУЛЬ ПАЦИЕНТА СОЗДАННЫХ ЭКЗЕМПЛЯРОВ ПСО

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФИО пациента</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>Ввод данных пользователем или скрипт-файл. Максимум 64 символа</td>
<td>ВСЕГДА</td>
<td>ПОЛЬЗ.</td>
</tr>
<tr>
<td>Идентификатор пациента</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>Ввод данных пользователем или скрипт-файл. Максимум 64 символа</td>
<td>ВСЕГДА</td>
<td>ПОЛЬЗ.</td>
</tr>
<tr>
<td>Дата рождения пациента</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>Всегда пусто. Нулевая длина</td>
<td>ЗНВП</td>
<td>ПОЛЬЗ.</td>
</tr>
<tr>
<td>Пол пациента</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>Ввод данных пользователем или скрипт-файл.</td>
<td>ВСЕГДА</td>
<td>ПОЛЬЗ.</td>
</tr>
</tbody>
</table>

Таблица 6.1-3
МОДУЛЬ ОБЩИХ ИССЛЕДОВАНИЙ СОЗДАННЫХ ЭКЗЕМПЛЯРОВ ПСО

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>УИД экземпляра исследования</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Дата исследования</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>Всегда пусто</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Время исследования</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>Всегда пусто</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Учетный номер</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>Всегда пусто</td>
<td>ЗНВП</td>
<td>АВТО</td>
</tr>
</tbody>
</table>

Таблица 6.1-4
МОДУЛЬ ОБЩИХ СЕРИЙ СОЗДАННЫХ ЭКЗЕМПЛЯРОВ ПСО

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>Способ воздействия</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>УЗ</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>УИД экземпляра серии</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
</tbody>
</table>
6.1.1.3. Модули изображений вторичной съемки

Таблица 6.1-5
Модуль оборудования для ВС созданных экземпляров ПСО ВС

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>Способ воздействия</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>УЗ</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Тип преобразования</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
</tbody>
</table>

Таблица 6.1-6
Модуль общих изображений созданных экземпляров ПСО ВС

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип изображения</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Создается приложением DICOM ультразвуковой системы Site~Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Описание получения</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Создается приложением DICOM ультразвуковой системы Site~Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Сжатие изображений с потерями</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Создается приложением DICOM ультразвуковой системы Site~Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
</tbody>
</table>
Таблица 6.1-7
МОДУЛЬ ПИКСЕЛЕЙ ИЗОБРАЖЕНИЙ СОЗДАННЫХ ЭКЗЕМПЛЯРОВ ПСО ВС

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>Данные элемента изображения</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>Выбранные пользователем файлы изображений (т. е. JPEG)</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Образцы на пиксель</td>
<td>(0028,0002)</td>
<td>УЗ</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Фотометрическая интерпретация</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Планарная конфигурация</td>
<td>(0028,0006)</td>
<td>УЗ</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Строки</td>
<td>(0028,0010)</td>
<td>УЗ</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Столбцы</td>
<td>(0028,0011)</td>
<td>УЗ</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Выделенные биты</td>
<td>(0028,0100)</td>
<td>УЗ</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
<tr>
<td>Сохраненные биты</td>
<td>(0028,0101)</td>
<td>УЗ</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>АВТО</td>
</tr>
</tbody>
</table>
Заявление о соответствии стандарту DICOM для приложения DICOM ультразвуковой системы Site-Rite® 8

Таблица 6.1-8
МОДУЛЬ ИЗОБРАЖЕНИЙ ВС СОЗДАННЫХ ЭКЗЕМПЛЯРОВ ПСО ВС

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>Старший разряд</td>
<td>(0028,0102)</td>
<td>УЗ</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>AVTO</td>
</tr>
<tr>
<td>Представление в пикселях</td>
<td>(0028,0103)</td>
<td>УЗ</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>AVTO</td>
</tr>
</tbody>
</table>

Таблица 6.1-9
МОДУЛЬ ОБЩИХ ПСО СОЗДАННЫХ ЭКЗЕМПЛЯРОВ ПСО ВС

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дата вторичной съемки</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>Дата создания файла изображения (т. е. JPEG)</td>
<td>ВСЕГДА</td>
<td>AVTO</td>
</tr>
<tr>
<td>Время вторичной съемки</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>Время создания файла изображения (т. е. JPEG)</td>
<td>ВСЕГДА</td>
<td>AVTO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Название атрибута</th>
<th>Тег</th>
<th>ПЗ</th>
<th>Значение</th>
<th>Присутствие значения</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>Конкретный набор символов</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>«IOS_IR 100» или «ISO_IR_144»</td>
<td>АНВП</td>
<td>КОНФИГ.</td>
</tr>
<tr>
<td>УИД класса ПСО</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>«1.2.840.10008.5.1.4.1.1.7»</td>
<td>ВСЕГДА</td>
<td>AVTO</td>
</tr>
<tr>
<td>УИД экземпляра ПСО</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>AVTO</td>
</tr>
<tr>
<td>Обозначение схемы кодирования</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Создается приложением DICOM ультразвуковой системы Site-Rite® 8</td>
<td>ВСЕГДА</td>
<td>AVTO</td>
</tr>
</tbody>
</table>
DICOM 적합성 명세
Site~Rite® 8 초음파 시스템 DICOM

회사명: BARD Access Systems, Inc.
제품명: Site~Rite® 8 초음파 시스템 DICOM
버전: 1.0-rev. A-1
내부 문서 번호: 1190674
날짜: 2015년 4월 20일
1. 적합성 명세 개요

Site~Rite® 8 초음파 시스템 DICOM 기능은 초음파 장치에서 표준 JPEG 레스터 이미지를 적용하고, 초음파 영상의 경우 초음파 영상 DICOM 인스턴스를 생성하며, 선택한 환자 정보를 기반으로 하는 지원 ECG 파형 영상의 경우에는 2차 캡처 DICOM 인스턴스를 생성합니다. 또한 사용자는 환자/연구 정보를 수동으로 입력할 수 있습니다. 또한 PACS 보관함으로 영상을 전송하기 위해 필요한 DICOM 서비스를 구현합니다.

표 1-1은 Site~Rite® 8 초음파 시스템 DICOM 어플리케이션에 의해 수행되는 네트워크 서비스의 개요를 제공합니다.

표 1-1
네트워크 서비스

<table>
<thead>
<tr>
<th>SOP 클래스</th>
<th>서비스 사용자(SCU)</th>
<th>서비스 공급자(SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>전송</td>
<td></td>
<td></td>
</tr>
<tr>
<td>초음파 영상</td>
<td>예</td>
<td>아니오</td>
</tr>
<tr>
<td>2차 캡처 영상</td>
<td>예</td>
<td>아니오</td>
</tr>
</tbody>
</table>
2. 목차

1. 적합성 명세 개요 ... 2
2. 목차 ... 3
3. 소개 ... 4
 3.1. 개정 이력 ... 4
 3.2. 대상 ... 4
 3.3. 설명 .. 4
 3.4. 용어 및 정의 ... 4
 3.5. DICOM 통신의 기본 사항 ... 4
 3.6. 약어 ... 7
 3.7. 참조 자료 ... 7
4. 네트워킹 ... 8
 4.1. 구현 모델 ... 8
 4.1.1. 어플리케이션 데이터 흐름 8
 4.1.2. AE의 기능 정의 .. 8
 4.1.2.1. 저장소 어플리케이션 인터페이스의 기능 정의 8
 4.1.2.2. 실제 활동의 시현상 ... 9
 4.2. AE 사양 ... 9
 4.2.1. 저장소 어플리케이션 인터페이스 사양 9
 4.2.1.1. SOP 클래스 .. 9
 4.2.1.2. 연결 정책 .. 10
 4.2.1.2.1. 일반 ... 10
 4.2.1.2.2. 연결 수 ... 10
 4.2.1.2.3. 비동기적 특징 .. 10
 4.2.1.2.4. 구현 확인 정보 ... 10
 4.2.1.3. 연결 초기화 정책 .. 11
 4.2.1.3.1. 활동 - 영상 전송 ... 11
 4.2.1.3.1.1. 활동 설명 및 시현상 11
 4.2.1.3.1.2. 제안된 프레젠테이션 컨텍스트 12
 4.2.1.3.1.3. SOP 별 적합성 영상 저장소 SOP 클래스 13
 4.3. 통신 프로필 .. 14
 4.3.1. TCP/IP 스택 ... 14
 4.3.1.1. 실제 미디어 지원 .. 14
 4.4. 확장/특수화/사용화 .. 14
 4.5. 구성 ... 14
 4.5.1. AE 타이틀/프레젠테이션 주소 매핑 14
 4.5.1.1. 로컬 AE 타이틀 ... 14
 4.5.1.2. 원격 AE 타이틀 ... 14
 4.5.1.2.1. 원격 SCP ... 14
 4.6. 확장 문자 집합 지원 .. 15
5. 미디어 교환 ... 15
6. 부록 ... 15
 6.1. IOD 컨텐츠 ... 15
 6.1.1. 생성한 SOP 인스턴스 ... 15
 6.1.1.1. 2차 컷쳐 영상 IOD .. 15
 6.1.1.2. 일반 모듈 .. 16
 6.1.1.3. 2차 컷쳐 영상 모듈 .. 16
3. 소개

3.1. 개정 이력

<table>
<thead>
<tr>
<th>문서 버전</th>
<th>발행일</th>
<th>작성자</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2015년 3월 24일 화요일</td>
<td>Tyler Durfee</td>
<td>초기 버전</td>
</tr>
</tbody>
</table>

3.2. 대상

이 문서는 Site-Rite® 8 초음파 시스템 DICOM 어플리케이션을 의료 시설에 어떻게 통합시키는지를 이해할 필요가 있는 사람들을 위해 작성되었습니다. 여기에는 전체 영상 네트워크 정책과 앱디렉트 모두에 대한 책임이 있는 사람뿐만 아니라 제품의 DICOM 기능을 상세히 이해할 필요가 있는 통합자가 포함됩니다. 이 문서는 몇몇의 기본적인 DICOM 정의가 포함되어 있으며 어느 특정이든지 이 제품이 DICOM 기능을 어떻게 구현하는지 이해할 수 있도록 합니다. 그러나 통합자는 다른 DICOM 응용, 이 문서의 표와 제품 기능이 어떤 관계가 있는지를 그리고 해당 기능이 호환 가능한 DICOM 기능을 지원하는 기타 장치와 어떻게 통합되는지에 대해 충분히 이해할 수 있도록 합니다.

3.3. 설명

이 DICOM 적합성 명세의 범위는 Site-Rite® 8 초음파 시스템 DICOM 및 기타 DICOM 제품 간 통합을 용이하게 하는 것입니다. 적합성 명세는 DICOM 표준과 함께 읽고 이해해야 합니다. DICOM 자체는 상호 운용성을 보증하지 않습니다. 그러나 적합성 명세는 호환 가능한 DICOM 기능을 지원하는 다른 어플리케이션 간 상호 운용성에 대한 첫 단계 비교를 용이하게 합니다.

이 적합성 명세는 대상 정보의 적절한 교환을 보장하기 위해 유효성 검사를 다른 DICOM 장비로 대체할 수 없습니다. 사실 사용자는 다음과 같은 중요한 문제를 알고 있어야 합니다.

- 다른 적합성 명세에 비교하는 것은 제품과 다른 DICOM 적합한 장비 간 상호 연결성 및 상호 운용성을 평가하기 위한 첫 단계임을 알립니다.
- 검사 결과는 의료 시설에서 확립한 바와 같이 필요한 특정 호환 가능한 DICOM 장비와의 상호 운용성 레벨의 유효성 검사를 위해 정의되고 수행되어야 합니다.

3.4. 용어 및 정의

이 적합성 명세에서 사용되는 다음 용어들에 대한 비공식적인 정의가 제공됩니다. DICOM 표준은 이러한 용어의 공식적인 정의에 대한 신뢰할 수 있는 출처입니다.

고유 식별자(UID) - 특정 개체 또는 개체의 클래스를 식별하는 세계적으로 고유한 “접선으로 표시된 십진수” 문자열. ISO-8824 개체 식별자. 예: 연구 인스턴스 UID, SOP 클래스 UID, SOP 인스턴스 UID.

모듈 - 서로 논리적으로 관련이 있는 정보 개체의 내 일련의 특성. 예: 환자 모듈에는 환자 이름, 환자 ID, 환자 생년월일 및 환자 성별이 포함됩니다.

미디어 어플리케이션 프로필 - DICOM 정보 개체 및 이동식 미디어에서 교환된 인코딩 사양(예: CD).
보안 프로필 - 기밀성, 무결성, 및/또는 교환된 DICOM 데이터의 사용 가능성 보장하기 위해 어플리케이션 엔티티에 의해 사용되는 암호화, 사용자 인증 또는 디지털 서명과 같은 일련의 메커니즘.

서비스/개체 쌍(SOP) 인스턴스 - 정보 개체로, SOP 클래스에서 교환된 정보가 특별히 발생한 것을 정함. 예: 특정 초음파 영상.

서비스/개체 쌍(SOP) 클래스 - 특정 유형의 데이터 개체와의 네트워크 또는 미디어 전송(서비스) 영상, DICOM 상호 운용성 사양의 기본 단위. 예: 초음파 영상 저장소 서비스, 압축 구문, 전송 구문 또는 환자 정보.

서비스 클래스 공급자(SCP) - DICOM 네트워크 서비스를 제공하는 어플리케이션 엔티티의 역할로, 일반적으로 다른 어플리케이션 엔티티(서비스 클래스 사용자)가 요청한 작업을 수행하는 서버. 예: 그림 보관 및 통신 시스템(영상 저장소 SCP 및 영상 퀘리/검색 SCP), 방사선 정보 시스템(형식 작업 목록 SCP).

서비스 클래스 사용자(SCU) - DICOM 네트워크 서비스를 사용하는 어플리케이션 엔티티의 역할로, 일반적으로 클라이언트. 예: 이미징 형식(영상 저장소 SCU 및 형식 작업 목록 SCU), 이미징 웹스테이션(영상 퀘리/검색 SCU).

어플리케이션 엔티티(AE) - DICOM 네트워크 또는 미디어 인터페이스 소프트웨어를 포함한 DICOM 정보 교환의 끝. 즉, DICOM 정보 개체 또는 메시지를 전송하거나 수신하는 소프트웨어. 단일 장치는 여러 어플리케이션 엔티티를 가질 수 있습니다.

어플리케이션 타이틀 - 외부적으로 알려진 어플리케이션 엔티티 이름으로, DICOM 어플리케이션을 네트워크에 있는 다른 DICOM 어플리케이션과 식별하기 위해 사용.

어플리케이션 컨텍스트 - DICOM 어플리케이션 엔티티 간에 사용되는 통신 유형의 사양. 예: DICOM 네트워크 프로토콜.

연결 - 어플리케이션 엔티티 간에 설정된 네트워크 통신 채널.

자료 형태(VR) - 텍스트, 정수, 사람 이름 또는 코드와 같은 개별 DICOM 데이터 요소의 형식 유형. DICOM 정보 개체는 각 데이터 요소 유형의 메시지 형식에 따라 전송되는 데이터의 형식과 관련된 조건이 있을 수 있습니다. 예: JPEG 압축(영상), 리틀 엔디언 명시적 값 표시.

정보 개체 정의(IOD) - 데이터 개체 유형으로 구성되는 지정한 레코드 집합이며, 특정 데이터 개체 인스턴스를 나타내지는 않는 대신 동일한 속성을 가지는 일종의 비슷한 데이터 개체. 특정은 필수(유형 1), 필수지만 알 수 없을 가능성 있음(유형 2) 또는 선택 사항(유형 3)으로 지정할 수 있으며, 특정(유형 1C 및 2C)의 사용과 관련된 조건이 있을 수 있습니다. 예: MR 영상 IOD, CT 영상 IOD, 인쇄 작업 IOD.

추가 구문 - 일반적으로 서비스/개체 쌍(SOP) 클래스와 동등한 어플리케이션 간에 교환하도록 합의된 정보. 예: 검증 SOP 클래스, 형식 작업 목록 정보 모델 찾기 SOP 클래스, 컴퓨터 방사선 영상 저장소 SOP 클래스.
3.5. DICOM 통신의 기본 사항

이 섹션은 비전문가를 위해 이 적합성 명세에 사용된 용어를 설명합니다. 적합성 명세에 사용된 핵심 용어는 아래의 표준화된 명세에 기술되어 있습니다. 이 섹션은 DICOM 교육을 대신하지 않으며 DICOM 용어의 의미를 많이 단순화했습니다.

DICOM은 다수의 네트워크 서비스 및 정보가 개별을 지원하며 이들 각각은 협상을 위한 추상 구문이라고 정의합니다. 또한 DICOM은 전송 구문으로 표시된 다양한 데이터 인코딩 방식들을 지정합니다. 협상은 초기화 아플리케이션 엔티티가 연결에 사용될 추상 구문 및 전송 구문의 조합을 제안할 수 있도록 합니다. 이러한 조합을 프레젠테이션 컨텍스트라고 합니다. 수신 아플리케이션 엔티티는 지원하는 프레젠테이션 컨텍스트를 허용합니다.

또한 각 프레젠테이션 컨텍스트의 경우 연결 협상으로 어떤 역할이 서비스 클래스 사용자(SCU - 클라이언트)이고 어떤 역할이 서비스 클래스 공급자(SCP - 서버)인지에 대한 장치가 역할에 대한 협의를 할 수 있습니다. 일반적으로 연결을 초기화하는 장치는 SCU입니다. 즉, 클라이언트 시스템은 서버를 호출하지만 항상 그런 것은 아닙니다.

연결 협상은 최종적으로 최대 네트워크 패킷(PDU) 크기, 보안 정보 및 네트워크 서비스 옵션(확장 협상 정보라고 함) 교환을 가능하게 합니다.
연결 매개 변수를 협상했던 어플리케이션 엔티티는 이제 데이터 교환을 시작할 수 있습니다. 공통 데이터 교환은 작업 목록 및 저장한 영상 목록, 영상 개체 및 분석(구조적 보고서) 전송 및 필름 프린터로 영상 전송에 대한 퀘리를 포함합니다. 각 교환 데이터 단위는 적절한 정보 개체 정의에 따라 전송자에 의해 형식을 지정되며 협상한 전송 구문을 사용하여 전송됩니다. 모든 시스템이 수학해야 하는 기본 전송 구문이 있지만 일부 사용 사례의 경우 가장 효율적이지는 않을 수 있습니다. 각 전송은 성공, 실패 또는 해당 퀘리나 검색 작업이 여전히 진행 중이라는 것을 나타내는 응답 상태와 함께 수신자에 의해 명시적으로 승인됩니다.

또한 두 어플리케이션 엔티티는 미디어(CD-R 등)를 교환함으로서 서로 통신할 수 있습니다. 연결 협상이 가능하지 않기 때문에 두 모두 “사전 협상한” 교환 미디어 형식, 추상 구문 및 전송 구문을 지정하는 미디어 어플리케이션 프로필을 사용합니다.

3.6. 약어

다음 약자 및 약어가 이 문서에서 사용됩니다.

<table>
<thead>
<tr>
<th>약어</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>미국 방사선 의학회</td>
</tr>
<tr>
<td>DICOM</td>
<td>의료용 디지털 영상 및 통신</td>
</tr>
<tr>
<td>NEMA</td>
<td>미국 전기 및 영상진단기기 제조업체 협회</td>
</tr>
<tr>
<td>AE</td>
<td>어플리케이션 엔티티</td>
</tr>
<tr>
<td>PDU</td>
<td>프로토콜 데이터 단위</td>
</tr>
<tr>
<td>SCP</td>
<td>서비스 클래스 공급자</td>
</tr>
<tr>
<td>SCU</td>
<td>서비스 클래스 사용자</td>
</tr>
<tr>
<td>SOP</td>
<td>서비스 개체 쌍</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>전송 제어 프로토콜/인터넷 프로토콜</td>
</tr>
<tr>
<td>UID</td>
<td>고유 식별자</td>
</tr>
<tr>
<td>LEE</td>
<td>리틀 엔디언 명식적</td>
</tr>
<tr>
<td>LEI</td>
<td>리틀 엔디언 암시적</td>
</tr>
<tr>
<td>BEE</td>
<td>빅 엔디언 명식적</td>
</tr>
</tbody>
</table>

3.7.참조 자료

<table>
<thead>
<tr>
<th>DICOM PS3.4</th>
<th>DICOM PS3.4: 서비스 클래스 사양은 다음 주소에서 무료로 사용할 수 있습니다. http://medical.nema.org/</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td>원래원래 활동사진전문가단체(Joint Photographic Experts Group)에 의해 만들어진 영상 압축 표준입니다. 이는 이미지 ISO/IEC IS 10918-1</td>
</tr>
</tbody>
</table>
4. 네트워킹

4.1. 구현 모델

4.1.1. 어플리케이션 데이터 흐름

Site-Rite® 8 초음파 시스템 DICOM 어플리케이션의 저장소 어플리케이션 엔티티는 원격 AE에 영상을 전송합니다. 실제 로컬 활동인 “영상 전송”과 관련이 있습니다. 완료한 각 연구 또는 선택한 지정 영상에 대해 사용자 요청에 따라 “영상 전송”이 수행됩니다. Site-Rite® 8 초음파 시스템 DICOM 어플리케이션에서 제공한 사용자 인터페이스를 통해 사용자가 활성화하면 각 표시된 일련의 영상들은 즉시 사전 구성된 대상에 저장됩니다.

4.1.2. AE의 기능 정의

4.1.2.1. 저장소 어플리케이션 엔티티의 기능 정의

사용자는 Site-Rite® 8 초음파 시스템 DICOM 어플리케이션에서 로컬로 저장된 일련의 영상을 선택하여 저장소 AE를 활성화하기 위해 DICOM 전송(전송) 버튼을 선택합니다. 연결 요청이 사전 구성된 대상 AE로 전송되며 프레젠테이션 컨텍스트의 협상이 성공하면 영상 전송이 시작됩니다. 연결을 할 수 없는 경우 사용자는 즉시 오류 통지 알림을 받고 자세한 정보가 로그됩니다. 기본값으로 저장소 AE는 오류 조건에 관하여 다른 연결을 초기화하려고 시도하지 않습니다.
4.1.2.2. 실제 활동의 시퀀싱

1. 사용자가 환자 및 연구 정보를 입력함
2. 사용자가 영상을 캡처함
3. 사용자가 영상을 선택하고 전송함
4. 확득한 영상을 저장함

그림 4.1-2
시퀀싱 제약 조건

정상적인 작업 흐름 조건 하에서 그림 4.1-2의 같은 시퀀싱 제약 조건은 다음에 해당합니다.

1. 사용자는 해당하는 경우 환자 및 연구 정보를 입력하거나 업데이트합니다.
2. 사용자는 연구 중 영상을 캡처합니다.
3. 사용자는 원격 AE로 전송하기 위해 사용자 인터페이스를 통해 로컬 저장소에서
 영상을 선택하고 어플리케이션 사용자 인터페이스 내 “DICOM 전송” 버튼을
 선택합니다.
4. 어플리케이션은 연구에 대해 사용자가 입력한 환자 정보를 얻고 DICOM
 인스턴스를 생성하며 선택한 DICOM 인스턴스를 원격 AE로 전송합니다.

4.2. AE 사양

4.2.1. 저장소 어플리케이션 엔티티 사양

4.2.1.1. SOP 클래스
Site-Rite® 8 초음파 시스템 DICOM 어플리케이션은 다음 SOP 클래스에 대한 표준
적합성은 제공합니다.
표 4.2-1
AE 저장소에 대한 SOP 클래스

<table>
<thead>
<tr>
<th>SOP 클래스 이름</th>
<th>SOP 클래스 UID</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>초음파 영상 저장소</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>예</td>
<td>아니오</td>
</tr>
<tr>
<td>2차 캡처 영상 저장소</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>예</td>
<td>아니오</td>
</tr>
</tbody>
</table>

4.2.1.2. 연결 정책

4.2.1.2.1. 일반

DICOM 3.0용 DICOM 표준 어플리케이션 컨텍스트 이름은 항상 다음과 같이 제안됩니다.

표 4.2-2

<table>
<thead>
<tr>
<th>어플리케이션 컨텍스트 이름</th>
<th>1.2.840.10008.3.1.1.1</th>
</tr>
</thead>
</table>

4.2.1.2.2. 연결 수

Site-Rite® 8 초음파 시스템 DICOM 어플리케이션은 사용자가 활성화한 전송 요청이 처리되고 있는 각 대상에 대해 한 번에 하나의 연결을 초기화합니다. 한 번에 단 하나의 전송 작업만 활성화되며 다른 전송 작업은 활성 전송 요청이 완료되거나 실패할 때까지 대기 상태를 유지합니다.

표 4.2-3

<table>
<thead>
<tr>
<th>최대 동시 연결 수</th>
<th>1</th>
</tr>
</thead>
</table>

4.2.1.2.3. 비동기적 특징

Site-Rite® 8 초음파 시스템 DICOM 어플리케이션은 비동기 통신(즉, 하나의 연결에서 해결되지 않은 여러 트랜잭션)을 지원하지 않습니다.

표 4.2-4

<table>
<thead>
<tr>
<th>해결되지 않은 최대 비동기 트랜잭션 수</th>
<th>1</th>
</tr>
</thead>
</table>

4.2.1.2.4. 구현 확인 정보

이 어플리케이션 엔티티에 대한 구현 정보는 다음과 같습니다.

표 4.2-5

<table>
<thead>
<tr>
<th>구현 클래스 UID</th>
<th>1.2.826.0.1.3680043.2.360.0.3.5.4</th>
</tr>
</thead>
</table>
4.2.1.3. 연결 초기화 정책

4.2.1.3.1. 활동 - 영상 전송

4.2.1.3.1.1. 활동 설명 및 시퀀스

사용자는 영상을 선택하여 어플리케이션의 사용자 인터페이스에서 사전 구성된 대상으로 이 영상을 전송할 수 있습니다. 각 요청은 전송 버튼을 누르면 즉시 수행되며 사용자는 전송 상태에 대해 알림을 받습니다.

DICOM 전송이 사용자에 의해 활성화되면 Site-Rite® 8 초음파 시스템 DICOM 어플리케이션의 저장소 AE는 사전 구성된 대상 서버와의 연결을 시도하여 선택한 영상을 저장하기 위해 C-STORE 요청을 시작합니다. 이 프로세스가 원격 어플리케이션 엔터티와의 연결에 성공하면 열린 연결을 통해 선택한 각 인스턴스를 차례대로 전송합니다. 전송 상태가 사용자 인터페이스를 통해 사용자에게 다시 보고됩니다. 원격 어플리케이션의 C-STORE 응답에 성공 또는 경고 외의 상태가 포함된 경우 연결이 중단되며 사용자는 실패 상태에 대한 알림을 받습니다. 사용자는 전송 프로세스를 언제든지 재시작할 수 있습니다.

저장소 AE는 C-STORE 요청 발부를 위해 새 연결 초기화를 시도합니다. 사용자 선택에 여러 영상이 포함되는 경우 각 영상에 대해 순차적으로 개별 연결이 협상됩니다.

![그림 4.2-6](image)

활동 시퀀스 - 영상 전송
저장소 AE 및 원격 AE 간 가능한 상호 작용 시퀀스(SCP로서 저장소 서비스 클래스를 지원하는 PACS 보관함 또는 영상 관리자)가 그림 4.2-6에 설명되어 있습니다.

1. 사용자는 전송할 영상을 한 개 이상 선택합니다.
2. 선택한 각 영상에 대해 저장소 AE는 원격 AE와의 연결을 업니다.
3. C-STORE 요청을 사용하여 하나의 사용자 선택 영상이 원격 AE로 전송되며 원격 AE는 C-STORE 응답과 함께 회신합니다(상태 성공).
4. 저장소 AE가 연결을 닫습니다.
5. 저장소 AE는 모든 영상이 전송될 때까지 위의 2-4단계를 따라 순차적으로 다음 영상을 처리합니다.

4.2.1.3.1.2. 제안된 프레젠테이션 컨텍스트

Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 아래 표에 나타난 프레젠테이션 컨텍스트들로 제안할 수 있습니다.

| 프레젠테이션 컨텍스트 표 | 추상 구문 | 전송 구문 | 역할 | 확장
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>이름</td>
<td>UID</td>
<td>이름 목록</td>
<td>UID 목록</td>
<td></td>
</tr>
<tr>
<td>초음파 영상 저장소</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>표 4.2-8 참조</td>
<td>표 4.2-8 참조</td>
<td>SCU 없음</td>
</tr>
<tr>
<td>2차 캡처 영상 저장소</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>표 4.2-8 참조</td>
<td>표 4.2-8 참조</td>
<td>SCU 없음</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 4.2-8</th>
<th>제안된 전송 구문</th>
</tr>
</thead>
<tbody>
<tr>
<td>전송 구문 이름</td>
<td>전송 구문 UID</td>
</tr>
<tr>
<td>암시적 VR 리틀 엔디안(DICOM 기본값)</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>명시적 VR 리틀 엔디안</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>명시적 VR 빅 엔디안</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 4.2-9</th>
<th>압축</th>
</tr>
</thead>
<tbody>
<tr>
<td>전송 구문 이름</td>
<td>전송 구문 UID</td>
</tr>
<tr>
<td>JPEG 손실</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG 무손실</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

하나의 영상 전송 과정에서 Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 여러 프레젠테이션 컨텍스트에서 동일한 추상 구문(즉, 영상 인스턴스의 SOP 클래스)을 포함합니다. 각 추상 구문 및 전송 구문 중은 고유하며 제안된 프레젠테이션 컨텍스트 중 하나의 추상 구문에 따라 DICOM 기본 전송 구문(즉, 암시적 VR 리틀 엔디안)을 포함합니다. 각 SOP 클래스가 가진 프레젠테이션 컨텍스트는 항상 저장소 AE에 의한 연결 요청에 포함됩니다.
4.2.1.3.1.3. SOP별 적합성 영상 저장소 SOP 클래스

저장소 AE에서 지원하는 모든 영상 저장소 SOP 클래스는 지정된 경우를 제외하고 동일한 동작을 수행하며 이 섹션에 함께 설명되어 있습니다.

사용자 선택 영상 인스턴스의 저장소 SOP 클래스에 기반한 저장소 AE는 각각 저장소 AE에서 지원하는 다른 전송 구문을 포함하고 있는 여러 프레젠테이션 컨텍스트와 함께 원격 AE에 연결 요청을 제안합니다. 처리되고 있는 선택 영상 인스턴스의 저장소 SOP 클래스와 일치하는 프레젠테이션 컨텍스트 중 수락된 것이 없으면 사용자는 오류 상태에 대해 적절한 알림을 받습니다.

원격 AE가 동일한 추상 구문에 대해 여러 프레젠테이션 컨텍스트를 수락하면, 기본값으로 저장소 AE는 C_STORE 프로세스 전에 선택 영상(즉, 초음파 또는 2차 캡처)에 기반하여 프레젠테이션 컨텍스트를 선택합니다.

C-STORE 응답에서 상태 코드 발생 시 저장소 AE의 동작은 다음 표에 요약되어 있습니다.

<table>
<thead>
<tr>
<th>표 4.2-10</th>
<th>저장소 C-STORE 반응 상태 처리 동작</th>
</tr>
</thead>
<tbody>
<tr>
<td>서비스 상태</td>
<td>추가 의미</td>
</tr>
<tr>
<td>성공</td>
<td>성공</td>
</tr>
<tr>
<td>경고</td>
<td>경고</td>
</tr>
<tr>
<td>* 오류</td>
<td>모든 기타 상태 코드</td>
</tr>
</tbody>
</table>

통신 오류 중 저장소 AE의 동작은 다음 표에 요약되어 있습니다.

<table>
<thead>
<tr>
<th>표 4.2-11</th>
<th>저장소 통신 오류 동작</th>
</tr>
</thead>
<tbody>
<tr>
<td>예외</td>
<td>동작</td>
</tr>
<tr>
<td>시간 제한</td>
<td>A-ABORT를 사용하여 연결이 중단되고 전송 작업이 실패한 것으로 간주됩니다. 이유는 해당 로그 파일에 보고됩니다.</td>
</tr>
<tr>
<td>SCP 또는 네트워크 계층에 의해 중단된 연결</td>
<td>전송 작업이 실패한 것으로 간주됩니다. 이유는 로그 파일에 보고된다고 사용자에게 알림을 보내고 있습니다.</td>
</tr>
</tbody>
</table>

참고: 로그 파일은 "shift+cntrl+L"을 선택하여 USB 저장 장치에 저장할 수 있습니다.

실패한 전송은 사용자 상호 작용에 의해 재시작할 수 있습니다. 어플리케이션은 전송에 실패한 파일 재전송을 자동으로 시도하지 않습니다.

Site~Rite® 8 초음파 시스템 DICOM에서 생성한 여러 영상 저장소 SOP 인스턴스의 컨텐츠는 DICOM 표준의 PS 3.3 영상 IOD 정의를 준수하며 섹션 6.1에 설명되어 있습니다.
4.3. 통신 프로필
Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 DICOM 표준 파트8에서 정의된 대로 DICOM V3.0 TCP/IP 네트워크 통신 지원을 제공합니다.

4.3.1. TCP/IP 스택
Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 이 어플리케이션이 실행되는 컴퓨터 시스템에서 이 초음파 시스템 DICOM의 TCP/IP 스택을 상속합니다.

4.3.1.1. 실제 미디어 지원
Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 TCP/IP가 실행되는 실제 매체에 관심을 두지 않으며 이 어플리케이션이 실행되는 컴퓨터 시스템에서 매체를 상속합니다.

4.4. 확장/특수화/사유화
해당 없음.

4.5. 구성

4.5.1. AE 타이틀/프레젠테이션 주소 매핑
기본 AE 타이틀은 제공되지 않습니다 원격 서버 호스트 주소 및 포트 번호에 따라 로컬 및 원격 AE 타이틀이 구성되어야 합니다. 구성된 로컬 AE 타이틀 및 원격 연결 정보는 향후 사용을 위해 저장소 AE에 의해 시스템에 저장됩니다.

4.5.1.1. 로컬 AE 타이틀
저장소 AE에 대해 구성 가능한 로컬 AE 타이틀은 단 하나입니다. 이 구성은 사용자가 수정할 수 있습니다.

4.5.1.2. 원격 AE 타이틀
Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 단 하나의 원격 AE 구성을 허용합니다. 원격 AE 타이틀, 원격 서버의 호스트 주소(즉, IP 주소) 및 포트 번호는 설치 시 구성되어야 합니다. 사용자는 언제든지 원격 AE, 호스트 주소 및 포트 번호 구성을 수정할 수 있습니다.

4.5.1.2.1. 원격 SCP
다음 표는 원격 SCP에 대한 구성 옵션을 설명합니다.

<table>
<thead>
<tr>
<th>SCP 설정</th>
<th>기본값</th>
<th>구성 가능</th>
<th>구성 옵션</th>
</tr>
</thead>
<tbody>
<tr>
<td>저장소 어플리케이션 엔티티 타이틀</td>
<td>아니오</td>
<td>예</td>
<td>N/A</td>
</tr>
<tr>
<td>원격 어플리케이션 엔티티 타이틀</td>
<td>아니오</td>
<td>예</td>
<td>N/A</td>
</tr>
<tr>
<td>원격 IP 주소</td>
<td>아니오</td>
<td>예</td>
<td>N/A</td>
</tr>
<tr>
<td>원격 TCP 포트</td>
<td>아니오</td>
<td>예</td>
<td>N/A</td>
</tr>
<tr>
<td>전송 구문</td>
<td>아니오</td>
<td>예</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>압축</td>
<td>아니오</td>
<td>예</td>
<td>무손실, 손실, 없음</td>
</tr>
</tbody>
</table>
4.6. 확장 문자 집합 지원
Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 다음 문자 집합을 지원합니다.
- ISO-IR 6(기본값): 기본 G0 집합
- ISO-IR 100: 라틴 알파벳 No. 1
또한 Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 환자 이름, 연구 설명 및 시리즈 설명 등의 해당하는 값 표현에서 다음과 같은 문자 레퍼토리 사용을 지원합니다.
- ISO_IR 144 (ISO 8859-5:1988 라틴/키릴 알파벳 보조 집합)

5. 미디어 교환
Site~Rite® 8 초음파 시스템 DICOM 어플리케이션은 미디어 저장소를 지원하지 않습니다.

6. 부록

6.1. IOD 컨텐츠

6.1.1. 생성한 SOP 인스턴스

표 6.1-1은 Site~Rite® 8 초음파 시스템 DICOM 어플리케이션의 저장소 AE에서 전송하는 초음파 2차 캡처 영상의 특성을 명시합니다.

다음 표는 다수의 약어를 사용합니다. “모듈 상태” 열에 사용된 약어는 다음과 같습니다.

<table>
<thead>
<tr>
<th>특성</th>
<th>사용자</th>
<th>자동</th>
<th>구성</th>
</tr>
</thead>
<tbody>
<tr>
<td>합성 존재하지 않음</td>
<td>특성 값이 사용자 입력임</td>
<td>특성 값이 자동으로 생성됨</td>
<td>특성 값이 구성 가능 매개 변수임</td>
</tr>
<tr>
<td>합성 존재하지 않는 값(값이 존재하지 않는 경우 길이가 0으로 전송된 특성)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>합성 존재하지 없는 특성</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>합성</td>
<td>특성 값이 없이 전송됨</td>
<td></td>
<td></td>
</tr>
<tr>
<td>비어 있음</td>
<td>특성 값이 없이 전송됨</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“출처” 열에서 사용된 약어:

<table>
<thead>
<tr>
<th>사용자</th>
<th>자동</th>
<th>구성</th>
</tr>
</thead>
<tbody>
<tr>
<td>특성 값</td>
<td>특성 값이 사용자 입력임</td>
<td>특성 값이 자동으로 생성됨</td>
</tr>
<tr>
<td>특성 값</td>
<td>특성 값이 구성 가능 매개 변수임</td>
<td></td>
</tr>
</tbody>
</table>

6.1.1.1. 2차 캡처 영상 IOD

표 6.1-1
생성한 초음파 및 2차 캡처 SOP 인스턴스에 대한 IOD

<table>
<thead>
<tr>
<th>IOD</th>
<th>모듈</th>
<th>참조</th>
<th>모듈 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>환자</td>
<td>환자 이름</td>
<td>표 6.1-2</td>
<td>합성</td>
</tr>
<tr>
<td>연구</td>
<td>일반 연구</td>
<td>표 6.1-3</td>
<td>합성</td>
</tr>
<tr>
<td>시리즈</td>
<td>일반 시리즈</td>
<td>표 6.1-4</td>
<td>합성</td>
</tr>
<tr>
<td>기기</td>
<td>SC 장비</td>
<td>표 6.1-5</td>
<td>합성</td>
</tr>
<tr>
<td>영상</td>
<td>일반 영상</td>
<td>표 6.1-6</td>
<td>합성</td>
</tr>
<tr>
<td></td>
<td>영상 픽셀</td>
<td>표 6.1-7</td>
<td>합성</td>
</tr>
<tr>
<td></td>
<td>SC 영상</td>
<td>표 6.1-8</td>
<td>합성</td>
</tr>
<tr>
<td></td>
<td>SOP 일반</td>
<td>표 6.1-9</td>
<td>합성</td>
</tr>
</tbody>
</table>
6.1.1.2. 일반 모듈

표 6.1-2
생성한 SOP 인스턴스의 환자 모듈

<table>
<thead>
<tr>
<th>특성 이름</th>
<th>태그</th>
<th>VR</th>
<th>값</th>
<th>값 상태</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>환자 이름</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>사용자 입력 또는 스크립트 파일. 최대 64자</td>
<td>항상</td>
<td>사용자</td>
</tr>
<tr>
<td>환자 ID</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>사용자 입력 또는 스크립트 파일. 최대 64자</td>
<td>항상</td>
<td>사용자</td>
</tr>
<tr>
<td>환자 생년월일</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>항상 비어 있음. 길이 0</td>
<td>항상</td>
<td>사용자</td>
</tr>
<tr>
<td>환자 성별</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>사용자 입력 또는 스크립트 파일</td>
<td>항상</td>
<td>사용자</td>
</tr>
</tbody>
</table>

표 6.1-3
생성한 SOP 인스턴스의 일반 연구 모듈

<table>
<thead>
<tr>
<th>특성 이름</th>
<th>태그</th>
<th>VR</th>
<th>값</th>
<th>값 상태</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>연구 인스턴스 UID</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>연구 날짜</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>항상 비어 있음</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>연구 시간</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>항상 비어 있음</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>취득 번호</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>항상 비어 있음</td>
<td>항상</td>
<td>자동</td>
</tr>
</tbody>
</table>

표 6.1-4
생성한 SOP 인스턴스의 일반 시리즈 모듈

<table>
<thead>
<tr>
<th>특성 이름</th>
<th>태그</th>
<th>VR</th>
<th>값</th>
<th>값 상태</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>양상</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>시리즈 인스턴스 UID</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
</tbody>
</table>

표 6.1-5
생성한 SC SOP 인스턴스의 SC 장비 모듈

<table>
<thead>
<tr>
<th>특성 이름</th>
<th>태그</th>
<th>VR</th>
<th>값</th>
<th>값 상태</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>양상</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>변환 형식</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>항상</td>
<td>자동</td>
</tr>
</tbody>
</table>
생성한 SC SOP 인스턴스의 일반 영상 모듈

<table>
<thead>
<tr>
<th>특성 이름</th>
<th>태그</th>
<th>VR</th>
<th>값</th>
<th>값 상태</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>영상 유형</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>파생 설정</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>손실 영상 압축</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
</tbody>
</table>

생성한 SC SOP 인스턴스의 영상 픽셀 모듈

<table>
<thead>
<tr>
<th>특성 이름</th>
<th>태그</th>
<th>VR</th>
<th>값</th>
<th>값 상태</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>픽셀 데이터</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>사용자 선택 영상 파일(즉, JPEG)</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>픽셀당 샘플</td>
<td>(0028,0002)</td>
<td>US</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>광도 해석</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>평면 구성</td>
<td>(0028,0006)</td>
<td>US</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>행</td>
<td>(0028,0010)</td>
<td>US</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>열</td>
<td>(0028,0011)</td>
<td>US</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>할당된 비트</td>
<td>(0028,0100)</td>
<td>US</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>저장된 비트</td>
<td>(0028,0101)</td>
<td>US</td>
<td>Site-Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>특성 이름</td>
<td>태그</td>
<td>VR</td>
<td>값</td>
<td>값 상태</td>
<td>출처</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>----</td>
<td>---</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>높은 비트</td>
<td>(0028,0102)</td>
<td>US</td>
<td>Site~Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>픽셀 표시</td>
<td>(0028,0103)</td>
<td>US</td>
<td>Site~Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특성 이름</th>
<th>태그</th>
<th>VR</th>
<th>값</th>
<th>값 상태</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>2차 캡처 날짜</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>영상 파일(즉, JPEG) 생성 날짜</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>2차 캡처 시간</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>영상 파일(즉, JPEG) 생성 시간</td>
<td>항상</td>
<td>자동</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특성 이름</th>
<th>태그</th>
<th>VR</th>
<th>값</th>
<th>값 상태</th>
<th>출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>특성 문자 집합</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>“IOS_IR 100” 또는 “ISO_IR_144”</td>
<td>항상</td>
<td>구성</td>
</tr>
<tr>
<td>SOP 클래스 UID</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>“1.2.840.10008.5.1.4.1.1.7”</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>SOP 인스턴스 UID</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>Site~Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
<tr>
<td>코딩 구성표 지정자</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>Site~Rite® 8 초음파 시스템 ICOM에 의해 생성됨</td>
<td>항상</td>
<td>자동</td>
</tr>
</tbody>
</table>

제조업체
Bard Access Systems, Inc.
605 North 5600 West
Salt Lake City, UT 84116
U.S.A.
전화: 1-801-522-5000
고객 서비스: 1-800-545-0890
기술/영업 지원: 1-800-443-3385
팩스: 1-801-522-4948
www.bardaccess.com

Bard 및 Site~Rite는 C. R. Bard, Inc.의 상표 및/또는 등록 상표입니다. 다른 모든 상표는 해당 소유자의 자산입니다.

© 2015 C. R. Bard, Inc. 모든 권리 보유.

미국에서 조립
Site~Rite® 8 超音波系統 DICOM 之 DICOM 符合聲明

公司名稱：BARD Access Systems, Inc.

產品名稱：Site~Rite® 8 超音波系統 DICOM

版本：1.0-rev. A-1

內部文件編號：1190674

日期：2015 年 4 月 20 日
1. 符合聲明概述

Site-Rite® 8 超音波系統 DICOM 的功能是從超音波裝置接收標準的 JPEG 光柵影像，並根據所選患者資訊產生超音波影像專用的超音波影像 DICOM 實例，以及支援 ECG 波形的二次擷取 DICOM 實例。此外，它讓使用者能手動輸入患者／研究資訊。也能執行將影像傳輸到 PACS 歸檔檔案所需的 DICOM 服務。

表 1-1 所示的是以 Site-Rite® 8 超音波系統 DICOM 應用程式所執行的網路服務概述。

<table>
<thead>
<tr>
<th></th>
<th>SOP 類別</th>
<th>服務使用者 (SCU)</th>
<th>服務供應商 (SCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>傳輸</td>
<td>超音波影像</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td></td>
<td>二次擷取影像</td>
<td>是</td>
<td>否</td>
</tr>
</tbody>
</table>
目錄

1. 符合聲明概述 ... 2
2. 目錄 ... 3
3. 簡介 ... 4
 3.1. 修訂紀錄 .. 4
 3.2. 讀者 .. 4
 3.3. 備註 .. 4
 3.4. 詞語與定義 .. 4
 3.5. DICOM 通訊基本原理 .. 6
 3.6. 縮略語 .. 6
 3.7. 參考文獻 ... 7
4. 網路 ... 7
 4.1. 實施模型 .. 7
 4.1.1. 應用資料流 .. 7
 4.1.2. AE 的功能定義 .. 8
 4.1.2.1. 儲存應用程式實體的功能定義 8
 4.1.2.2. 真實世界活動的序列 8
 4.2. AE 規格 .. 9
 4.2.1. 儲存應用程式實體規格 9
 4.2.1.1. SOP 類別 .. 9
 4.2.1.2. 結合政策 ... 9
 4.2.1.2.1. 一般 .. 9
 4.2.1.2.2. 結合數 ... 9
 4.2.1.2.3. 異步特性 .. 9
 4.2.1.2.4. 實施識別資訊 ... 9
 4.2.1.3. 結合啟動政策 ... 10
 4.2.1.3.1. 活動 - 傳送影像 ... 10
 4.2.1.3.1.1. 活動說明與序列 10
 4.2.1.3.1.2. 提議的表達上下文 11
 4.2.1.3.1.3. SOP 指定合規影像儲存 SOP 類別 12
 4.3. 通訊規範 ... 12
 4.3.1. TCP/IP 結 .. 13
 4.3.1.1. 實體媒體支援 ... 13
 4.4. 擴充／專業／私用 .. 13
 4.5. 配置 ... 13
 4.5.1. AE 標題／表達位址對映 13
 4.5.1.1. 當地 AE 標題 .. 13
 4.5.1.2. 遠程 AE 標題 .. 13
 4.5.1.2.1. 遠程 SOP ... 13
 4.6. 支援擴充字元集 ... 13
5. 媒體環境 .. 14
6. 附加 ... 14
 6.1. IOD 內容 .. 14
 6.1.1. 建立之 SOP 實例 ... 14
 6.1.1.1. 二次擷取影像 IOD .. 14
 6.1.1.2. 通用模組 ... 15
 6.1.1.3. 二次擷取影像模組 .. 15
3. 簡介

3.1. 修訂紀錄

<table>
<thead>
<tr>
<th>文件版本</th>
<th>發佈日期</th>
<th>作者</th>
<th>說明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2015 年 3 月 24 日</td>
<td>Tyler Durfee</td>
<td>初始版本</td>
</tr>
</tbody>
</table>

3.2. 讀者

本文件的發行是為了讓人了解如何將 Site~Rite® 8 超音波系統 DICOM 應用程式整合至其醫療機構。這包括了負責整體影像網路政策及建構的人士，以及需要詳細了解產品 DICOM 特性的整合師。本文件包含一些 DICOM 的基本定義，讓讀者了解本產品如何實現 DICOM 的特性。但是，整合師應充分了解全部的 DICOM 術語，文件中各表格與產品功能性的相關性，以及此功能性如何與支援相容 DICOM 特性的其他裝置整合。

3.3. 備註

DICOM 合符聲明的範圍在於促進 Site~Rite® 8 超音波系統 DICOM 與其他 DICOM 產品之間的整合。應結合閱讀和理解本符合聲明與 DICOM 標準。DICOM 本身並不保證其互通性。但是，符合聲明確實便於支援相容 DICOM 功能的不同應用程式之間在互通性的初級比較。

符合聲明並非用來取代其他 DICOM 設備的驗證，以確保預期資訊的正確交換。事實上，使用者應注意下列重要問題：

一 不同之符合聲明間的比較，僅是本產品與其他 DICOM 合規設備之間在可互通性與互通性初步評估。

二 應定義和執行醫療機機構所建立之測試程序，用於驗證與特定相容 DICOM 設備所需互通性的程度。

3.4. 術語與定義

提供本符合聲明中下列所用術語的非正式定義。這些術語的權威來源是 DICOM 標準。

抽象語法 – 應用程式間資訊交換的商定，通常等同於服務／物件對 (SOP) 類別。範例：驗證 SOP 類、模態工作列表資訊模型找尋 SOP 類、電腦化放射影像儲存 SOP 類。

應用程式實體 (AE) – DICOM 資訊交換的終端，包括 DICOM 網路或媒體介面軟體；例如送出或接收 DICOM 資訊物件或訊息的軟體。單一裝置可以擁有多個應用程式實體。

應用程式實體標題 – 應用程式實體對外所熟知的名稱，用於在網路上將某個 DICOM 應用程式與其他 DICOM 應用程式區分開來。

應用程式上下文 – 應用程式實體之間所用通訊類型的規範。範例：DICOM 網路協定。

結合作為 – 應用程式實體之間所設置的網路通訊通道。

屬性 – 物件定義中的資訊單位；以標籤來識別的資料元素。資訊可以是個複雜的資料結構（序列），本身由低層資料元素構成。範例：患者 ID (0010,0020)、登錄號 (0008,0050)。
資訊物件定義 (IOD) – 構成一類資料物件的屬性指定集，並不代表資料物件的特定實例，而是在有著相同特性的類似資料物件類。屬性可以指定為強制性（1 類），必需但可能未知（2 類）或可選（3 類），並可能存在與屬性使用相關的條件（1C 和 2C 類）。範例：MR 影像 IOD、CT 影像 IOD、列印工作 IOD。

聯合圖像專家群 (JPEG) – DICOM 應用程式所使用的標準影像壓縮技術集。

媒體應用設定檔 - 在卸除式媒體（例如 CD）上交換 DICOM 資訊物件與編碼的規範。

模組 – 資訊物件定義內彼此邏輯相關的屬性集。範例：患者模組包括了患者姓名、患者 ID、患者生日，以及患者性別。

協商 – 確立「結合」的第一階段，使應用程式實體在待交換資料的類型以及資料編碼方式上保持一致。

表達上下文 – 應用程式實體之間協商出在結合上使用的 DICOM 網路服務集；包括抽象語法和傳輸語法。

協定資料單元 (PDU) – 跨網路發送的 DICOM 訊息封包（件）。裝置必須明其可接收 DICOM 訊息的最大封包的大小。

保全設定檔 – 應用程式實體用來確保 DICOM 交換資料之保密性、完整性、及／或可用性的一套機制，例如加密、使用者身分驗證，或數位簽名。

服務類別提供者 (SCP) – 提供 DICOM 網路服務的應用程式實體；通常是執行另一個應用程式請求作業的伺服器（服務類別使用者）。範例：圖像歸檔與通訊系統（影像儲存 SCP，以及影像查詢／檢索 SCP）、放射資訊系統（模態工作列表 SCP）。

服務類別使用者 (SCU) – 使用 DICOM 網路服務的應用程式實體；通常是客戶。範例：影像模態（影像儲存 SCU，以及模態工作列表 SCU）、影像工作站（影像查詢／檢索 SCU）。

服務／物件對 (SOP) 類別 – 特殊類型資料（物件）的媒體傳出或網路（服務）的規範；是 DICOM 可交互運作規範的基本單元。範例：超音波儲存服務、壓縮語法、傳輸語法，或患者資訊。

服務／物件對 (SOP) 實例 – 資訊物件：在 SOP 類別中交換的特定資訊事件。範例：特定的超音波影像。

標籤 – 資料元素之 32 位元識別符，以一對十六進位的四位數來表示出「群組」和「元素」。如果「群組」數字是奇數，則標籤是私用（製造商專用）資料元素。範例：(0010,0020) [患者 ID]、(07FE,0010) [像素資料]、(0019,0210) [私用資料元素]。

傳輸語法 – DICOM 資訊物件與訊息交換所使用的編碼。範例：JPEG 壓縮（影像），小端讀取外顯值表示。

唯一識別符 (UID) – 全球唯一的「加點十進位」字元串以識別特定的物件或物件類別：一種 ISO-8824 物件識別符。範例：研究實例 UID、SOP 類別 UID、SOP 實例 UID。
值表示 (VR) – 個別 DICOM 資料元件的正式類型，例如文字、整數、人員姓名，或編碼。
DICOM 資訊能將各個資料元素以外顯識別（外顯 VR），或是無外顯識別（內隱 VR）來傳送；以外顯 VR 時，接收的應用程式必須使用 DICOM 資料字典來查找各個資料元素的格式。

3.5. DICOM 通訊基本原理
本章說明了本符合聲明所用之非專業術語。本符合聲明書中所用的主要術語在下文中會以斜體字予以強調。本章並非用於替代 DICOM 的相關訓練，而是使 DICOM 衛語的意義較為顯易懂。

兩個應用程式實體（裝置）要在網路上以 DICOM 協定來彼此通訊，在初始網路「交握」必須首先就幾件事情達成一致。這兩個裝置中的一個必須啟動一個結合（對另一個裝置的連線），並詢問另一個裝置是否支援指定的服務、資訊，以及編碼（協商）。

DICOM 指定了一定數目的網路服務和資訊物件的類型，這些分別被稱為協商的抽象語法。DICOM 也指定了編碼資料的各種方法，稱為傳輸語法。協商讓啟動的應用程式實體提議在結合中使用抽象語法和傳輸語法的組合；這些組合稱為表達上下文。接收應用實體會接受其所支援的表達上下文。

至於每個表達上下文，結合協商讓這兩個裝置在工作角色上達成共識 – 一方作為服務類別使用者（SCU - 客戶端），另一方作為服務類別提供者（SCP - 伺服器）。通常啟動連線的一方會是 SCU，亦即，客戶端系統呼叫伺服器，但這也不是絕對的。

最後結合協商會啟用最大網路封包 (PDU) 大小、安全性資訊，以及網路服務選項的交換（稱為擴充／協商資訊）。

應用程式實體在完成結合參數的協商後，就可以開始交換資料了。通用資料交換包括儲存影像之工作列表和清單的查詢，影像物件與分析（結構報告）的傳輸以及送出影像至軟片印表機。每個可交換的資料單元都由發送器根據正確的資料物件定義而予以格式化，並使用協商的傳輸語法進行傳送。存在一個所有系統都必須接受的預設傳輸語法，但在某些用例，它未必會是最有效率的語法。接收器透過回應狀態對每個傳輸予以明確確認，指示成功、失敗，或者該查詢或檢索作業仍在進行中。

兩個應用程式實體也可經由交換媒體（例如 CD-R）彼此通訊。因為不能結合協商，所以雙方使用已指定「預協商」的媒體應用設定檔來交換媒體格式、抽象語法，以及傳輸語法。

3.6. 縮略語
本文件使用的簡稱和縮略語如下：

<table>
<thead>
<tr>
<th>代碼</th>
<th>意義</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>美國放射學學會</td>
</tr>
<tr>
<td>DICOM</td>
<td>醫療數位影像傳輸協定</td>
</tr>
<tr>
<td>NEMA</td>
<td>美國電器製造商協會</td>
</tr>
<tr>
<td>AE</td>
<td>應用程式實體</td>
</tr>
<tr>
<td>PDU</td>
<td>協定資料單元</td>
</tr>
<tr>
<td>SCP</td>
<td>服務類別提供者</td>
</tr>
<tr>
<td>SCU</td>
<td>服務類別使用者</td>
</tr>
<tr>
<td>SOP</td>
<td>服務物件對</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>傳輸控制協定／網際網路通訊協定</td>
</tr>
</tbody>
</table>
3.7. 參考文獻

<table>
<thead>
<tr>
<th>DICOM PS3.4</th>
<th>DICOM PS3.4：服務類別規範，於下列網址免費提供 http://medical.nema.org/</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td>最初由「聯合圖像專家群」所建立之圖像壓縮獨立碼。現在被稱為 ISO/IEC IS 10918-1</td>
</tr>
</tbody>
</table>

4. 網路

4.1. 實施模型

4.1.1. 應用資料流

Site-Rite® 8 超音波系統 DICOM 應用程式中的儲存應用程式實體將影像傳送至一個遠程應用程式實體。這與當地真實世界的活動「傳送影像」有關。「傳送影像」是依照使用者的請求為每個研究的完成或是為所選之特定影像而執行。當使用者經由 Site-Rite® 8 超音波系統 DICOM 應用程式中隨附的使用介面來啟用時，每個標記的影像集可立即儲存到預配置的目的地。
4.1.2. AE 的功能定義

4.1.2.1. 儲存應用程式實體的功能定義
使用者選取在 Site~Rite® 8 超音波系統 DICOM 應用中儲存於當地的一組影像，然後選取 DICOM 傳輸（傳送）鈕來啟動儲存 AE。結合的請求傳送至預配置的目的地 AE，並成功協定表達上下文時，就會啟動影像傳輸器，如果無法建立起結合，就會立即以錯誤通告通知使用者並將詳細情形記錄下來。在預設情況下，當出現錯誤條件時，儲存 AE 將不會啟動另一個結合。

4.1.2.2. 真實世界活動的序列

在正常工作流的條件下，圖 4.1-2 中所示的序列限制適用於：

1. 如適用時，使用者輸入或更新患者及研究資訊。
2. 在研究期間使用者擷取的一幀影像。
3. 使用者選取影像並傳送。
4. 儲存所獲得的影像

<table>
<thead>
<tr>
<th>儲存</th>
<th>影像管理器 PACS 归檔</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. 使用者輸入患者及研究資訊</td>
</tr>
<tr>
<td></td>
<td>2. 使用者擷取影像</td>
</tr>
<tr>
<td></td>
<td>3. 使用者選取影像並傳送</td>
</tr>
<tr>
<td></td>
<td>4. 儲存所獲得的影像</td>
</tr>
</tbody>
</table>

圖 4.1-2
序列限制

使用者擷取影像
使用者選取影像並傳送
儲存所獲得的影像
4.2. AE 規格

4.2.1. 儲存應用程式實體規格

4.2.1.1. SOP 類別

Site-Rite® 8 超音波系統具有對下列 SOP 類別的標準合規:

<table>
<thead>
<tr>
<th>標準合規類別名稱</th>
<th>SOP 類別 UID</th>
<th>SCU</th>
<th>SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>超音波影像儲存</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>二次擷取影像儲存</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>是</td>
<td>否</td>
</tr>
</tbody>
</table>

4.2.1.2. 結合政策

4.2.1.2.1. 一般

始終建議使用 DICOM 標準應用程式上下文名稱 DICOM 3.0:

| 應用程式上下文名稱 | 1.2.840.10008.3.1.1.1 |

4.2.1.2.2. 結合數

當使用者每次啟動之請求傳輸目的地正在處理時，Site-Rite® 8 超音波系統 DICOM 應用程式就會啟動一個結合。每次只會有一個傳送工作有效，其他的則會保持等候直到啟動傳送請求完成或失敗。

<table>
<thead>
<tr>
<th>為 AE 儲存啟動的結合數</th>
<th>同時結合的最大數</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

4.2.1.2.3. 異步特性

Site-Rite® 8 超音波系統 DICOM 應用程式不支援異步通訊（亦即在單一結合上的多個未處理異動）。

<table>
<thead>
<tr>
<th>以 SCU 做為儲存的異步特性</th>
<th>未處理異步異動的最大數</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

4.2.1.2.4. 實施識別資訊

本應用程式實體的實施資訊為：

<table>
<thead>
<tr>
<th>DICOM 實施類別</th>
<th>实施類別 UID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2.826.0.1.3680043.2.360.0.3.5.4</td>
</tr>
</tbody>
</table>
4.2.1.3. 結合啓動政策

4.2.1.3.1. 活動－傳送影像

4.2.1.3.1.1. 活動說明與序列
使用者可以選取影像並請求從應用程式的使用介面將之傳送至預配置的目的地。每個請求在一經選取傳送鈕時就立即執行，並通知使用者傳輸狀態。

使用者啓動了 DICOM 傳送後，Site~Rite® 8 超音波系統 DICOM 應用程式的儲存 AE 會嘗試和預配置之目的伺服器建立結合，並啓動儲存所選影像的 C-STORE 請求。當此程序對遠程應用程式實體成功地建立起一項結合時，就會經由開啟的結合將各個所選的實例逐一傳送。傳送狀態會經由使用介面回報給使用者。如果從遠程應用所回應的 C-STORE 內含成功或警告以外的狀態，就會中止該結合並通知使用者相關失敗狀態。使用者可在任何時間重新啓動該傳送程序。

儲存 AE 嘗試啓動一個新結合，以便發出 C-STORE 請求。如果使用者選擇包含多個影像，則會依序為各個影像協定一個獨立的結合。
活動序列 – 傳送影像

儲存 AE 和遠程 AE（PACS 歸檔或支援將儲存服務類別作為 SCP 的影像管理器）之間可能的互動序列請見圖 4.2-6：

1. 使用者選取了一個或多個待傳輸影像。
2. 針對選取的每個影像，儲存 AE 會和遠程 AE 開啟一個結合。
3. 使用者選取的影像使用 C-STORE 請求傳輸至遠程 AE，而遠程 AE 使用 C-STORE 回應進行回覆（狀態成功）。
4. 儲存 AE 關閉結合。
5. 儲存 AE 按照步驟 2-4 依序處理下一個影像，直到全部影像均已傳輸。

4.2.1.3.1.2. 提議的表達上下文

Site~Rite® 8 超音波系統 DICOM 應用程式可提議下表所示的任何「表達上下文」：

表 4.2-7
活動傳送影像之提議表達上下文

<table>
<thead>
<tr>
<th>表達上下文表</th>
<th>抽象語法</th>
<th>傳輸語法</th>
<th>工作協商</th>
</tr>
</thead>
<tbody>
<tr>
<td>名稱</td>
<td>UID</td>
<td>名稱清單</td>
<td>UL 清單</td>
</tr>
<tr>
<td>超音波影像儲存</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>請參閱表 4.2-8</td>
<td>無</td>
</tr>
<tr>
<td>二次顯取影像儲存</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>請參閱表 4.2-8</td>
<td>無</td>
</tr>
</tbody>
</table>

表 4.2-8
提議的傳輸語法

<table>
<thead>
<tr>
<th>傳輸語法名稱</th>
<th>傳輸語法 UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>内隱 VR 小端讀取（DICOM 預設）</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>外顯 VR 小端讀取</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
<tr>
<td>外顯 VR 大端讀取</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
</tbody>
</table>

表 4.2-9
壓縮

<table>
<thead>
<tr>
<th>傳輸語法名稱</th>
<th>傳輸語法 UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG 失真</td>
<td>1.2.840.10008.1.2.4.81</td>
</tr>
<tr>
<td>JPEG 不失真</td>
<td>1.2.840.10008.1.2.4.70</td>
</tr>
</tbody>
</table>

在影像的傳輸過程中，Site~Rite® 8 超音波系統 DICOM 應用程式將包括多個表達上下文中相同的抽象語法（亦即影像實例的 SOP 類）。各個抽象語法和傳輸語法對都是唯一的，而一個提議的表達上下文會依照抽象語法包含 DICOM 預設的傳輸語法（亦即內隱 VR 小端讀取）。儲存 AE 的結合請求中一定會包括帶有驗證 SOP 類的表達上下文。
4.2.1.3.3. **SOP 指定合規影像儲存 SOP 類別**

除非另有說明，儲存 AE 支援的所有影像儲存 SOP 類別否則均展現出相同的特性，在此章中會一起說明。

根據使用者所選影像實例的儲存 SOP 類別，儲存 AE 會對帶有多個表達上下文的遠程 AE 提議一項結合請求，而每個請求會含有該儲存 AE 所支援的不同傳輸語法。如果沒有任何表達上下文符合正在處理之所選影像實例的儲存 SOP 類別則會通知使用者相應的失敗狀況。

如果多個表達上下文因為相同的抽象語法而為遠程 AE 所接受，則在預設情況下，在 C_STORE 程序之前，儲存 AE 會根據所選的影像檢取表達上下文（亦即超音波或二次擷取）。

儲存 AE 遭遇 C-STORE 回應中的狀態碼時的行為摘要請見下表：

<table>
<thead>
<tr>
<th>服務</th>
<th>狀態</th>
<th>其他意義</th>
<th>錯誤代碼</th>
<th>行為</th>
</tr>
</thead>
<tbody>
<tr>
<td>成功</td>
<td>成功</td>
<td>0000</td>
<td>SCP 已成功地儲存了 SOP 實例。如果傳輸請求中選取的全部 SOP 實例均具有成功狀態，就會將該傳輸判定為成功並通知使用者。</td>
<td></td>
</tr>
<tr>
<td>警告</td>
<td>警告</td>
<td>B000-BFFF</td>
<td>影像傳輸判定為成功。</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>錯誤</td>
<td>任何其他狀態的編碼</td>
<td>SCP 儲存實例失敗。</td>
<td></td>
</tr>
</tbody>
</table>

通訊失敗時儲存 AE 的行為摘要請見下表：

<table>
<thead>
<tr>
<th>例外</th>
<th>行為</th>
</tr>
</thead>
<tbody>
<tr>
<td>逾期</td>
<td>使用 A-ABORT 中止結合，並將該傳輸工作判定為失敗。在日誌檔案中報告原因。</td>
</tr>
<tr>
<td>由 SCP 或網路層中止結合</td>
<td>將傳輸工作判定為失敗。經由日誌檔案向使用者報告原因。</td>
</tr>
</tbody>
</table>

* 可透過選取「shift+cntrl+L」將日誌檔儲存到 USB 儲存装置。

由 Site~Rite® 8 超音波系統 DICOM 所建立之不同影像儲存 SOP 實例的内容，符合 DICOM 標準之 PS 3.3 影像 IOD 定義，並在 6.1 章中說明。

4.3. **通訊規範**

Site~Rite® 8 超音波系統 DICOM 應用程式支援 DICOM 標準第 8 章中定義的 DICOM V3.0 TCP/IP 網路通訊。
4.3.1. **TCP/IP 疊**

Site~Rite® 8 超音波系統 DICOM 應用程式在開始執行時會繼承電腦系統的 TCP/IP 疊。

4.3.1.1. **實體媒體支援**

Site~Rite® 8 超音波系統 DICOM 應用程式不受執行 TCP/IP 實體媒體的影響；在開始執行時會繼承電腦系統的媒體。

4.4. **擴充／專業／私用**

不適用。

4.5. **配置**

4.5.1. **AE 標題／表達位址對映**

不提供預設的 AE 標題，必須配置當地及遠程 AE 標題以及遠程伺服器主機位址和通訊埠數。配置的當地 AE 標題和遠程連線資訊會由儲存 AE 儲存到系統內以便以後使用。

4.5.1.1. **當地 AE 標題**

只有一個當地 AE 標題可配置給儲存 AE。此配置可由使用者來修改。

4.5.1.2. **遠程 AE 標題**

Site~Rite® 8 超音波系統 DICOM 應用程式只能有一個遠程 AE 配置。必須在安裝時就配置好遠程 AE 標題，遠程伺服器主機位置（亦即 IP 位址）以及通訊埠數。使用者可在任何時間修改遠程 AE、主機位址及通訊部數。

4.5.1.2.1. **遠程 SCP**

下表中說明了遠程 SCP 的配置選項：

<table>
<thead>
<tr>
<th>SCP 設定</th>
<th>預設值</th>
<th>可配置性</th>
<th>配置選項</th>
</tr>
</thead>
<tbody>
<tr>
<td>儲存應用程式實體標題</td>
<td>否</td>
<td>是</td>
<td>不適用</td>
</tr>
<tr>
<td>遠程應用程式實體標題</td>
<td>否</td>
<td>是</td>
<td>不適用</td>
</tr>
<tr>
<td>遠程 IP 位址</td>
<td>否</td>
<td>是</td>
<td>不適用</td>
</tr>
<tr>
<td>遠程 TCP 埠</td>
<td>否</td>
<td>是</td>
<td>不適用</td>
</tr>
<tr>
<td>傳輸語法</td>
<td>否</td>
<td>是</td>
<td>LEE, LEI, BEE</td>
</tr>
<tr>
<td>壓迫</td>
<td>否</td>
<td>是</td>
<td>不失真、失真、無</td>
</tr>
</tbody>
</table>

4.6. **支援擴充字元集**

Site~Rite® 8 系統 DICOM 應用程式支援下列字元集：

- ISO-IR 6（預設值）：基本 G0 集
- ISO-IR 100：拉丁字母 No. 1

此外，Site~Rite® 8 超音波系統 DICOM 應用程式支援適用之數值表達中的下列字彙，例如患者姓名、研究說明及序列說明。

- ISO_IR 144 (ISO 8859-5:1988 拉丁／西里爾字母輔助集)
5. 媒體交換
Site~Rite® 8 超音波系統 DICOM 應用程式不支援媒體儲存。

6. 附件

6.1. IOD 內容

6.1.1. 建立之 SOP 實例

表 6.1-1 指定了 Site~Rite® 8 超音波系統 DICOM 系統應用程式之儲存 AE 所傳輸的超音波／二次擷取影像的屬性。

下列各表使用了許多的縮寫字。在「...存在時間」欄中所用的縮寫字為：

VNAP	數值不會總是存在（無值時傳送零長度的屬性）
ANAP	屬性不會總是存在
總是	總是存在
空	傳送無值屬性

在「來源」欄中所用的縮寫字為：

使用者	屬性值來源來自「使用者」輸入
自動	自動產生的屬性值
組態	屬性值來源是可設定的參數

6.1.1.1. 二次擷取影像 IOD

表 6.1-1

<table>
<thead>
<tr>
<th>IE</th>
<th>模組</th>
<th>參考</th>
<th>模組存在時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>患者</td>
<td>患者姓名</td>
<td>表 6.1-2</td>
<td>總是</td>
</tr>
<tr>
<td>研究</td>
<td>一般研究</td>
<td>表 6.1-3</td>
<td>總是</td>
</tr>
<tr>
<td>系列</td>
<td>一般系列</td>
<td>表 6.1-4</td>
<td>總是</td>
</tr>
<tr>
<td>設備</td>
<td>SC 設備</td>
<td>表 6.1-5</td>
<td>總是</td>
</tr>
<tr>
<td>影像</td>
<td>一般影像</td>
<td>表 6.1-6</td>
<td>總是</td>
</tr>
<tr>
<td></td>
<td>影像像素</td>
<td>表 6.1-7</td>
<td>總是</td>
</tr>
<tr>
<td></td>
<td>SC 影像</td>
<td>表 6.1-8</td>
<td>總是</td>
</tr>
<tr>
<td></td>
<td>SOP 通用</td>
<td>表 6.1-9</td>
<td>總是</td>
</tr>
</tbody>
</table>
6.1.1.2. 通用模組

表 6.1-2
建立之 SOP 實例的患者模組

<table>
<thead>
<tr>
<th>屬性名稱</th>
<th>標籤</th>
<th>VR</th>
<th>值</th>
<th>值存在時間</th>
<th>來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>患者姓名</td>
<td>(0010,0010)</td>
<td>PN</td>
<td>使用者輸入或指令檔最多 64 字元</td>
<td>總是</td>
<td>使用者</td>
</tr>
<tr>
<td>患者 ID</td>
<td>(0010,0020)</td>
<td>LO</td>
<td>使用者輸入或指令檔最多 64 字元</td>
<td>總是</td>
<td>使用者</td>
</tr>
<tr>
<td>患者生日</td>
<td>(0010,0030)</td>
<td>DA</td>
<td>總是為空，零長度</td>
<td>VNALP</td>
<td>使用者</td>
</tr>
<tr>
<td>患者性別</td>
<td>(0010,0040)</td>
<td>CS</td>
<td>使用者輸入或指令檔</td>
<td>總是</td>
<td>使用者</td>
</tr>
</tbody>
</table>

表 6.1-3
建立之 SOP 實例的一般研究模組

<table>
<thead>
<tr>
<th>屬性名稱</th>
<th>標籤</th>
<th>VR</th>
<th>值</th>
<th>值存在時間</th>
<th>來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>研究實例 UID</td>
<td>(0020,000D)</td>
<td>UI</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>研究日期</td>
<td>(0008,0020)</td>
<td>DA</td>
<td>總是為空</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>研究時間</td>
<td>(0008,0030)</td>
<td>TM</td>
<td>總是為空</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>登錄號</td>
<td>(0008,0050)</td>
<td>SH</td>
<td>總是為空</td>
<td>VNALP</td>
<td>自動</td>
</tr>
</tbody>
</table>

表 6.1-4
建立之 SOP 實例的一般系列模組

<table>
<thead>
<tr>
<th>屬性名稱</th>
<th>標籤</th>
<th>VR</th>
<th>值</th>
<th>值存在時間</th>
<th>來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>模態</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>系列實例 UID</td>
<td>(0020,000E)</td>
<td>UI</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
</tbody>
</table>

6.1.1.3. 二次擷取影像模組

表 6.1-5
建立之 SC SOP 實例的 SC 設備模組

<table>
<thead>
<tr>
<th>屬性名稱</th>
<th>標籤</th>
<th>VR</th>
<th>值</th>
<th>值存在時間</th>
<th>來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>模態</td>
<td>(0008,0060)</td>
<td>CS</td>
<td>US</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>轉換類型</td>
<td>(0008,0064)</td>
<td>CS</td>
<td>SI</td>
<td>總是</td>
<td>自動</td>
</tr>
</tbody>
</table>
表 6.1-6
建立之 SC 實例的一般影像模組

<table>
<thead>
<tr>
<th>屬性名稱</th>
<th>標籤</th>
<th>VR</th>
<th>值</th>
<th>值存在時間</th>
<th>來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>影像類型</td>
<td>(0008,0008)</td>
<td>CS</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>導出說明</td>
<td>(0008,2111)</td>
<td>ST</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>失真影像壓縮</td>
<td>(0028,2110)</td>
<td>CS</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
</tbody>
</table>

表 6.1-7
建立之 SC SOP 實例的影像像素模組

<table>
<thead>
<tr>
<th>屬性名稱</th>
<th>標籤</th>
<th>VR</th>
<th>值</th>
<th>值存在時間</th>
<th>來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>像素資料</td>
<td>(7FE0,0010)</td>
<td>OW</td>
<td>使用者選取的影像檔（例如 JPEG）</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>每像素樣本</td>
<td>(0028,0002)</td>
<td>US</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>光度解釋</td>
<td>(0028,0004)</td>
<td>CS</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>平面組態</td>
<td>(0028,0006)</td>
<td>US</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>列</td>
<td>(0028,0010)</td>
<td>US</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>欄</td>
<td>(0028,0011)</td>
<td>US</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>位元分配</td>
<td>(0028,0100)</td>
<td>US</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>位元儲存</td>
<td>(0028,0101)</td>
<td>US</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>高位元</td>
<td>(0028,0102)</td>
<td>US</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>像素表示</td>
<td>(0028,0103)</td>
<td>US</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
</tbody>
</table>
表 6.1-8
建立之 SC SOP 實例的 SC 影像模組

<table>
<thead>
<tr>
<th>屬性名稱</th>
<th>標籤</th>
<th>VR</th>
<th>值</th>
<th>值存在時間</th>
<th>來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>二次撿取日期</td>
<td>(0018,1012)</td>
<td>DA</td>
<td>影像檔（例如 JPEG）建立日期</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>二次撿取時間</td>
<td>(0018,1014)</td>
<td>TM</td>
<td>影像檔（例如 JPEG）建立時間</td>
<td>總是</td>
<td>自動</td>
</tr>
</tbody>
</table>

表 6.1-9
建立之 SC SOP 實例的 SOP 通用模組

<table>
<thead>
<tr>
<th>屬性名稱</th>
<th>標籤</th>
<th>VR</th>
<th>值</th>
<th>值存在時間</th>
<th>來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>特定字元集</td>
<td>(0008,0005)</td>
<td>CS</td>
<td>“IOS_IR 100” 或 ISO_IR_144</td>
<td>ANAP</td>
<td>組態</td>
</tr>
<tr>
<td>SOP 類別 UID</td>
<td>(0008,0016)</td>
<td>UI</td>
<td>“1.2.840.10008.5.1.4.1.1.7”</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>SOP 實例 UID</td>
<td>(0008,0018)</td>
<td>UI</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
<tr>
<td>編碼方案指示符</td>
<td>(0008,0102)</td>
<td>SH</td>
<td>由 Site-Rite® 8 超音波系統 DICOM 產生</td>
<td>總是</td>
<td>自動</td>
</tr>
</tbody>
</table>