

Solutions for Bloodstream Infection Diagnostics

To meet your goals and better impact patient care, take a holistic approach to bloodstream infection diagnostics that considers the interdependencies between blood collection, blood culture processing, identification and susceptibility testing and results reporting.

Preventing and managing sepsis are key challenges faced by healthcare institutions

Clinical studies have demonstrated a twofold increase in mortality caused by sepsis when inappropriate antimicrobial therapy is given.¹

Globally, an estimated **48.9 million cases of sepsis** are diagnosed each year with **~11 million sepsis-related deaths** reported.²

BD offers an integrated bloodstream infection solution across all three phases of the diagnostic pathway — from world-class blood culture collection to accurate, timely and actionable results — allowing you to make the connection across the entire diagnostic pathway and impact patient outcomes.

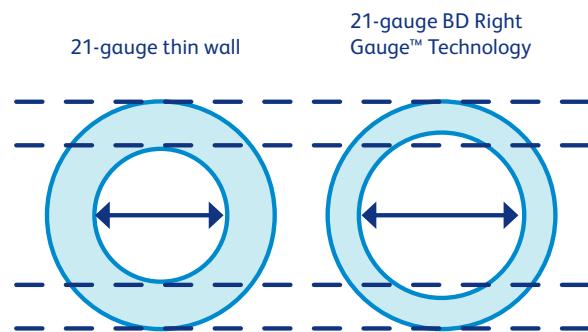
The right diagnosis begins with proper specimen collection

Challenges in patient preparation and specimen collection may result in pre-analytical errors, accounting for **up to 70% of all clinical errors** made in laboratory diagnostics.^{3,4}

Improper collection of blood culture specimens can lead to contamination events which may⁵:

- Impact length of hospital stay^{6,7}
- Lead to inappropriate antimicrobial treatment⁸
- Result in repeat diagnostic testing⁷

Additionally, under-filled blood culture vials can potentially lead to missed positives.⁹


Steripath® Initial Specimen Diversion Device® is FDA 510(k)-cleared to reduce blood culture contamination¹⁰

- Delivers **sustained, near-zero contamination rates** in 9 studies supporting both peripheral stick and fresh peripheral IV start blood culture draws¹¹⁻¹⁶
- Actively diverts the initial 1.5–2.0 mL of blood
- **Clinically proven** to meet the ENA, INS, CDC, and CLSI evidence-based best practice guidelines¹⁷⁻²⁰ to reduce blood culture contamination
- Compatible with **BD BACTEC™ Blood Culture Media**

BD Vacutainer® UltraTouch™ Push Button Blood Collection Sets with Pre-attached Holder are designed to improve safety, while maintaining sample integrity and workflow efficiency²¹⁻²³

- Pre-attached holder reduces the number of steps in the phlebotomy procedure, helping to simplify the collection process
- 25-gauge BD Vacutainer® UltraTouch™ Push Button Blood Collection Sets decrease insertion pain with no significant difference in overall pain compared to a 23-gauge BD Vacutainer® Safety-Lok™²²
- Single-handed, in vein activation reduces needlestick injuries by up to 88%²¹
- BD RightGauge™ Ultra-Thin Wall Cannula Technology provides a larger inner diameter while maintaining a set outer diameter
- May support collection of appropriate blood fill volume

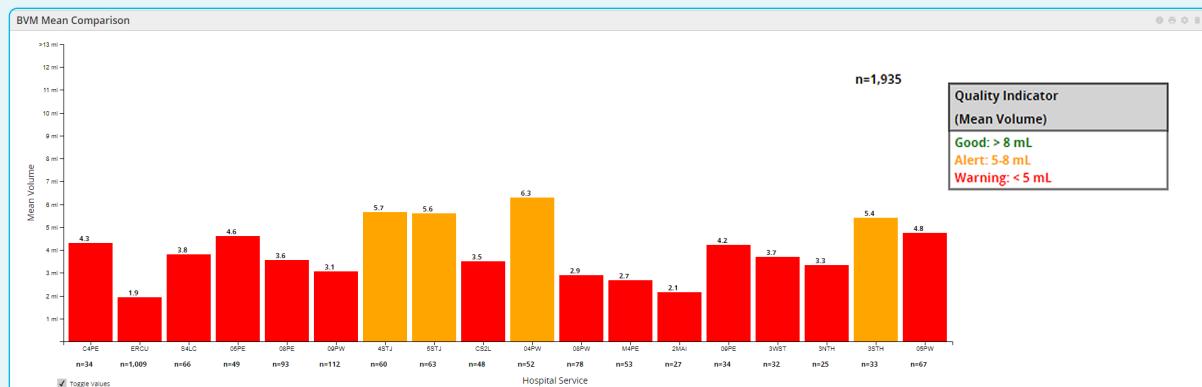
Pre-analytical phase

BD BACTEC™ blood culture media helps streamline the blood collection process

Unique bottleneck design allows for compatibility with standard blood collection sets which:

- Reduces inventory requirements for extra adapters as compared to other blood culture manufacturers
- Reduces the need to switch out adapters mid draw
- Decreases cost of overall specimen collection as compared to other blood culture manufacturers

BD Synapsys™ Informatics Solution offers insights that may help support quality improvement initiatives such as:


Blood volume monitoring

Blood culture positivity rates

Blood culture contamination rates

Blood culture media utilization (e.g., number of bottles collected)

Blood volume monitoring report

Media selection and instrumentation can impact recovery and time to detection of clinically significant organisms

Greater than one-third of patients hospitalized with sepsis may die prior to hospital discharge.²⁴ To help reduce morbidity and mortality of septic patients, recommended blood culture collection best practices include¹⁹:

- Collection of proper blood volume
- Collection of at least two sets of blood cultures prior to antimicrobial therapy
- Incubation of blood culture bottles as soon as possible

BD BACTEC™ Perfect Media Pair

The combination of BD BACTEC™ Plus Aerobic and Lytic Anaerobic media has been shown to improve time to detection and recovery of organisms.²⁵

BD BACTEC™ Myco F/Lytic Medium

A uniquely formulated medium for the recovery of mycobacteria, yeast and fungi from blood, or sterile body fluids when yeast or fungi are suspected.

BD BACTEC™ Platelet Media

For culture-based testing of platelet donations, BD offers the FDA-cleared platelet testing media for use in the quality-control testing of leukocyte-reduced apheresis platelet units and pooled leukocyte reduced whole blood platelet concentrates.

BD BACTEC™ FX Instrumentation

BD BACTEC™ FX instruments allow for simple and rapid workflow across multiple sites of a healthcare system. Scalable and modular design offers flexibility to support placement of an instrument near point of collection that helps to reduce time to Gram stain and time to result for organism identification and susceptibility testing which may enable earlier decision making regarding antimicrobial treatment.²⁶

BD BACTEC™ FX Top and Bottom Instruments

BD BACTEC™ FX40 Instrument

BD Synapsys™ Informatics Solution offers secure connectivity and tools to monitor:

Workflow

Compliance to best practices

Instrument utilization

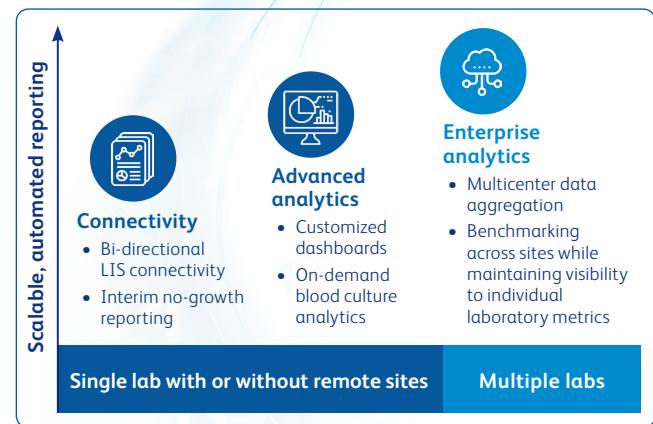
Actionable insights help drive continuous improvement

An estimated 23% of clinical errors

occur in the post-analytical phase of testing and are partly due to²⁷:

- Improper validation of analytical data
- Failure in reporting
- Inappropriate follow-up plans

BD Synapsys™ Informatics Solution


Access to data analytics enables key metric comparison within a laboratory network or against a benchmark

- Blood culture contamination and positivity rates
- Blood culture fill volume
- Blood culture time to positivity
- Time of removal of positive blood culture by laboratory personnel
- Blood culture media utilization

Distinct modules allow for the appropriate level of capabilities to meet individual institutional needs

- Connect multiple laboratories to automatically collect and aggregate data
- Integrate data from multiple laboratory locations for benchmarking purposes, while maintaining visibility to individual laboratory data
- Empowering healthcare professionals to drive standardized blood culture collection metrics which may impact financial and operational outcomes
- Scalable, automated reporting to drive standardization

Positivity and contamination rate monitoring

BD Synapsys™ Informatics Solution offers security by design

The risk to patient privacy due to data breaches is of increasing cybersecurity concern within the healthcare community. **BD Synapsys™ Informatics Solution** provides:

- ✓ UL CAP certification, which verifies that the system has proven robustness against tested software vulnerabilities and weaknesses.

- ✓ Compliance with SOC2 guidelines, which ensures that service procedures are aligned with the most stringent cybersecurity requirements.

The integrated BD bloodstream infection solution addresses your identification and susceptibility testing needs with speed, accuracy and efficiency.

The BD™ Bruker MALDI Biotyper™ offers:

- Rapid identification of microorganisms isolated from positive blood cultures
- A broad library of organisms to ensure accurate interpretation
- Batching capability for workflow optimization

The BD Phoenix™ automated ID/AST solution provides:

- Demonstrated performance in the detection of emerging resistance²⁹
- Up-to-date breakpoint guidelines, more than other conventional AST platforms, to help detect antimicrobial resistance more accurately and reduce the need for offline testing³⁰
- Built-in resistance marker testing including detection of carbapenemase producing organisms

Choose the BD BACTEC™ Blood Culture System as part of the integrated, end-to-end BD Bloodstream Infection Solution that seamlessly connects specimen collection, blood culture and antimicrobial susceptibility testing

References:

1. Xu S, Song Z, Han F, Zhang C. Effect of appropriate empirical antimicrobial therapy on mortality of patients with Gram-negative bloodstream infections: a retrospective cohort study. *BMC Infect Dis.* 2023 May 23;23(1):344. doi: 10.1186/s12879-023-08329-2. PMID: 37221465; PMCID: PMC10204198.
2. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. *Lancet.* 2020;395(10219):200-211.
3. Plebani M. Quality indicators to detect pre-analytical errors in laboratory testing. *Clin Biochem Rev.* 2012;33(3):85-88.
4. Alcantara JC, Alharbi B, Almotairi Y, Alam MJ, Muddathir ARM, Alshaghdali K. Analysis of preanalytical errors in a clinical chemistry laboratory: a 2-year study. *Medicine (Baltimore).* 2022;101(27):e29853.
5. Self W, Talbot T, Paul B, Collins S, Ward M. Cost analysis of strategies to reduce blood culture contamination in the emergency department: sterile collection kits and phlebotomy teams. *Infect Control Hosp Epidemiol.* 2014;35(8):1021-1028.
6. Skoglund E, Dempsey CJ, Chen H, Garey KW. Estimated clinical and economic impact through use of a novel blood collection device to reduce blood culture contamination in the emergency department: a cost-benefit analysis. *J Clin Microbiol.* 2019;57(1):e01015-e010118. doi:10.1128/JCM.01015-18.
7. Geisler BP, Jilg N, Patton RG, Pietzsch JB. Model to evaluate the impact of hospital-based interventions targeting false-positive blood cultures on economic and clinical outcomes. *J Hosp Infect.* 2019;102(4):438-444.
8. Nielsen LE, Nguyen K, Wahl CK, et al. Initial Specimen Diversion Device® reduces blood culture contamination and vancomycin use in academic medical center. *J Hosp Infect.* 2021;117. doi:https://doi.org/10.1016/j.jhin.2021.10.017.
9. Khare, Tarush Kothari, Joseph Castagnaro, Bryan Hemmings, May Tso, Stefan Juretschko, Active Monitoring and Feedback to Improve Blood Culture Fill Volumes and Positivity Across a Large Integrated Health System, Clinical Infectious Diseases, Volume 70, Issue 2, 15 January 2020, Pages 262–268, <https://doi.org/10.1093/cid/ciz198>
10. U.S. Food and Drug Administration. Steripath Gen2 Blood Collection System FDA clearance letter, Design fact as indicated in K192247. <https://fda.report/PMN/K192247>. Accessed May 23, 2023.
11. Tompkins LS, Tien V, Madison AN. Getting to zero: impact of a device to reduce blood culture contamination and false-positive central line-associated blood stream infections. *Infect Control Hosp Epidemiol.* 2023;44(9):1386-1390.
12. Rupp ME, Cavalieri RJ, Marolf C, Lyden E. Reduction in blood culture contamination through use of Initial Specimen Diversion Device. *Clin Infect Dis.* 2017;65(2):201-205.
13. Bell M, Bogar C, Plante J, Rasmussen K, Winters S. Effectiveness of a novel specimen collection system in reducing blood culture contamination rates. *J Emerg Nurs.* 2018;44(6):570-575.
14. Arenas M, Boseman GM, Coppin JD, Lukey J, Jinadatha C, Navarathna DH. Asynchronous testing of 2 specimen-diversion devices to reduce blood culture contamination: a single-site product supply quality improvement project. *J Emerg Nurs.* 2021;47(2):256-264.e6.
15. Zimmerman FS, Assous MV, Zevin S, Wiener-Well Y. Reducing blood culture contamination using an Initial Specimen Diversion Device. *Am J Infect Control.* 2019;47(7):822-826.
16. Povroznik MD. Initial Specimen Diversion Device® utilization mitigates blood culture contamination across regional community hospital and acute care facility. *Am J Med Qual.* 2022;37(5):405-412.
17. Vanhoy MA, Horigan A, Kaiser J, et al. Emergency Nurses Association (ENA). Clinical practice guideline: prevention of blood culture contamination. 2020.
18. Gorski LA, Hadaway L, Hagle ME, et al. Infusion therapy standards of practice, 8th edition. *J Infus Nurs.* 2021;44(1S suppl 1): S1-S2.
19. Clinical & Laboratory Standards Institute. *Principles and Procedures for Blood Cultures.* 2nd ed. CLSI Guideline M47; 2022.
20. Centers for Disease Control and Prevention. Blood culture contamination: an overview for infection control and antibiotic stewardship programs working with the clinical laboratory. <https://www.cdc.gov/antibiotic-use/core-elements/pdfs/fs-bloodculture-508.pdf>. Accessed May 23, 2023.
21. Steel (butterfly) needle performance improvement project. *Jt Comm J Qual Patient Saf.* 2009;35(2):100-105.
22. Padoan A. Evaluation of an improved small gauge needle for venipuncture in children with difficult venous access: impact on sample quality, phlebotomist satisfaction and patient pain perception. *Clin Chimica Acta.* 2020;500:213-219.
23. Mouser A, Uettwiler-Geiger D, Plokhoty E, Berube J, Ahuja AJ, Stankovic AK. Evaluation of pain and specimen quality by use of a novel 25-gauge blood collection set with ultra-thin wall cannula and 5-bevel tip design. *J Appl Lab Med.* 2017;2(2):201-210.
24. Vincent JL, Marshall JC, Namensys-Silva SA, et al. Assessment of the worldwide burden of critical illness: the Intensive Care Over Nations (ICON) audit. *Lancet Respir Med.* 2014;2(5):380-386.
25. Rocchetti A, Matteo LD, Bottino P, et al. Prospective study of the clinical performance of three BACTEC media in a modern emergency department: Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F. *J Microbiol Methods.* 2016;130:129-132.
26. Bruins MJ, Egbers MJ, Israel TM, Diepeveen SH, Wolfhagen MJ. Reduced length of hospital stay through a point of care placed automated blood culture instrument. *Eur J Clin Microbiol Infect Dis.* 2017;36(4):619-623.
27. Hawkins R. Managing the pre- and post-analytical phases of the total testing process. *Ann Lab Med.* 2012;32:5-16.
28. Dare RK, Lusardi K, Pearson C, et al. Clinical impact of accelerate Pheno Rapid Blood Culture Detection System in bacteremic patients. *Clin Infect Dis.* 2021;73(11):e4616-e4626.
29. BD Phoenix M50 Automated Microbiology System User's Manual. Sparks, MD: Becton, Dickinson and Company; 2024.
30. Simmer PJ, Rauch CA, Martin IW, et al. Raising the bar: improving antimicrobial resistance detection by clinical laboratories by ensuring use of current breakpoints. *Open Forum Infect Dis.* 2022;9(3):ofac007.

BD Life Sciences, 7 Loveton Circle, Sparks, MD, 21152, U.S.
800.638.8663

bd.com

